logo Книжные новинки и не только

«Идеальная ставка» Адам Кучарски читать онлайн - страница 3

Knizhnik.org Адам Кучарски Идеальная ставка читать онлайн - страница 3

Если вам понравилась книга, вы можете купить ее электронную версию на litres.ru

Именно такими наблюдениями занимались Альберт Хибс и Рой Уолфорд в 1947 году. Оба учились в Чикагском университете, Хибс — на математическом факультете, его друг Уолфорд — на медицинском. Как-то на каникулах приятели отправились в Рино — удостовериться, так ли непредсказуема игра в рулетку, как полагают устроители казино.

Большинство современных рулеток выполнены в оригинальном французском дизайне: 38 ячеек с числами от 1 до 36, поочередно раскрашенных в черный и красный цвет, и ячейки с цифрами 0 и 00 — зеленого цвета. Когда выпадает «зеро», выигрывает казино. Если мы сделаем серию ставок по одному доллару на свой любимый номер, то в среднем можем ожидать один выигрыш на каждые 38 попыток, и в этом случае казино заплатит нам 36 долларов. Таким образом, если мы будем крутить рулетку 38 раз, мы потратим 38 долларов, но выиграть в среднем сможем лишь 36 долларов. Это значит, что наши потери составят два доллара, или по пять центов на каждый спин — запуск рулетки.

Казино получает доход благодаря равномерному распределению выпадения всех чисел рулетки при каждом вращении. Однако рулетка, как и всякий механизм, не застрахована от дефектов или износа при длительной работе. Хибс и Уолфорд искали именно такие столы, где числа распределялись неравномерно. Обнаружив число, выпадающее чаще остальных, они могли извлечь из этой ситуации выгоду. Друзья снова и снова смотрели, как крутится рулетка, надеясь уловить нечто необычное. Но тут возникает вопрос: что значит «необычное»?


Пока во Франции Пуанкаре размышлял об истоках случайности, на другом берегу Ла-Манша Карл Пирсон проводил летние каникулы за подбрасыванием монетки. К концу каникул математик подбросил шиллинг 25 тысяч раз, прилежно записывая результат каждого броска. Большинство своих опытов он проделал на свежем воздухе. «Не сомневаюсь, что этим я заработал скверную репутацию у соседей», — вспоминал ученый. Помимо экспериментов с шиллингом Пирсон подрядил своего коллегу подбрасывать монету в один пенс (более 8000 раз) и вытягивать из сумки лотерейные билеты.

Пирсон считал, что для понимания случайности важно собрать как можно больше данных. По его словам, проблема заключалась в том, что ученые не располагают «абсолютным знанием о природных явлениях» — им доступно только «знание об ощущениях». Пирсон не ограничился монетами и лотерейными билетами. В поиске новых данных он обратил взгляд на Монте-Карло.

Как и Пуанкаре, Пирсон был человеком энциклопедического склада. Он интересовался не только теорией случайности. Пирсон писал пьесы и стихи, изучал физику и философию. Англичанин по рождению, он много путешествовал. Особенно его интересовала немецкая культура, и когда в университете Гейдельберга его имя — Карл — по ошибке написали с заглавной латинской «К» вместо «С», он решил писать его так и впредь.

К сожалению, надежд съездить в Монте-Карло у ученого было мало. Пирсон понимал, что вряд ли сможет добыть финансирование для «научной командировки» в казино Французской Ривьеры. Но лично смотреть на крутящийся шарик оказалось вовсе не обязательно. Газета Le Monaco каждую неделю публиковала записи результатов игры в рулетку. Пирсон решил сосредоточиться на результатах четырехнедельного периода лета 1892 года. Для начала он посмотрел пропорции выпадения красного и черного. При условии вращения рулетки бесконечное число раз и игнорирования зеро Пирсон ожидал увидеть соотношение красного и черного, близкое к равновесному.

Согласно результатам, опубликованным в газете, при примерно 16 тысячах спинов красное выпадало в 50,15 % случаев. Чтобы узнать, была ли эта разница случайной, Пирсон подсчитал количество спинов с отклонениями от 50 % и сравнил полученную цифру со средней, выведенной на основе вероятности. Оказалось, что разница в 0,15 % достаточно мала, чтобы усомниться в случайном характере вращения рулетки.

Итак, красное и черное выпадали примерно одинаковое число раз. Но Пирсон хотел проверить и другие параметры, например, выяснить, как часто выпадает один и тот же цвет подряд. Такая «полоса удачи» способна привести игроков в настоящее исступление. Например, в ночь на 18 августа 1913 года в одном из казино Монте-Карло шарик останавливался на черном больше дюжины раз подряд. Игроки толпились вокруг стола в ожидании очередного спина. Ну, не может же быть, чтобы снова выпало черное? Пока крутился шарик, игроки лихорадочно делали ставки на красное, но шарик упорно останавливался на черном. И опять. И опять. Однажды шарик «посетил» черное 26 раз подряд! Если вращение колеса есть дело случая, то каждый последующий спин не связан с предыдущим. Частота выпадений черного не делает более вероятным выпадение красного. Но в тот вечер все игроки верили, что вот-вот выпадет красное. С тех пор эта психологическая ловушка известна как «ошибка игрока» или «ложный вывод Монте-Карло».

Когда Пирсон сравнил количество выпадений одного цвета подряд с предполагаемым количеством таких выпадений в случае полной непредсказуемости поведения рулетки, результаты его насторожили. Один и тот же цвет выпадал два и три раза подряд гораздо реже, чем должен был бы. А чередования разных цветов — например, «красное-черное-красное» — встречались подозрительно часто. Пирсон просчитал вероятность получения столь странного результата, взяв за основу предположение, что колесо рулетки вращается случайным образом. Вероятность, которую он обозначил как p, оказалась чрезвычайно мала. Настолько мала, что, по словам Пирсона, он не дождался бы нужного результата, даже наблюдай он за рулеткой в Монте-Карло с момента Сотворения мира. Ученый счел, что полученные им данные неопровержимо доказывают: рулеткой управляет не слепой случай.

Пирсон был в ярости. Он надеялся, что рулетка станет отличным источником случайных данных, а его огромная лаборатория-казино выдавала недостоверные результаты. «Ученый может успешно предсказать, какой стороной упадет полупенсовик, — сетовал он, — но рулетка в Монте-Карло камня на камне не оставит от его теорий и посмеется над его расчетами». Коль скоро рулетка оказалась бесполезна для его исследований, Пирсон предложил закрыть все казино, а их доходы пожертвовать на благо науки. Позже, правда, обнаружилось, что в полученных ученым данных были повинны вовсе не «неправильные» рулетки. Просто журналисты из Le Monaco, которым по долгу службы полагалось наблюдать за игровыми столами и вести записи, часто предпочитали не утруждаться и брали цифры с потолка.

В отличие от ленивых репортеров Хибс и Уолфорд наблюдали за четырьмя рулетками в казино Рино очень внимательно. И обнаружили, что одна из них имеет смещение. Сделав ставки на этой «кривой» рулетке, друзья смогли изрядно увеличить свою первоначальную стодолларовую ставку. Сведения об их конечном выигрыше разнятся, но, каким бы он ни был, его хватило на покупку яхты и годовой круиз по Карибскому морю.

Существует множество легенд об игроках, обогатившихся схожим образом. Большой популярностью пользовались истории об инженере Викторианской эпохи Джозефе Джаггере, который при помощи дефектной рулетки выиграл в казино Монте-Карло целое состояние, а также об аргентинском синдикате, члены которого в начале 1950-х обчищали принадлежащие государству казино. Благодаря опытам Пирсона распознать уязвимую рулетку стало нетрудно. Но найти рулетку со смещением еще не значит найти прибыльную рулетку.

В 1948 году статистик Алан Уилсон на протяжении четырех с лишним недель записывал круглосуточные результаты игры в рулетку. Применив методику Пирсона, он быстро понял, что рулетка имеет смещение. Однако это не давало подсказок, как следует делать ставки. В публикации своего исследования Уилсон бросил читателям-игрокам вызов. «На основе каких статистических показателей вы поставите на конкретное число в рулетке?» — задал он им вопрос.

На поиск ответа ушло 35 лет. В конце концов математик Стюарт Этье догадался, что фокус состоит не в том, чтобы искать рулетку с дефектом, а в том, чтобы найти рулетку, выгодную для ставок. Даже если, отследив огромное количество спинов, мы установим, что одно из 38 чисел выпадает чаще остальных, этого будет еще не достаточно для получения выгоды. Число должно появляться не меньше чем один раз за 36 спинов, в противном случае мы все равно проиграем казино.

На рулетке Уилсона наиболее часто выпадающим числом было 19, но Этье не нашел доказательств того, что ставка на него была бы выгодна в долгосрочной перспективе. Несомненно, в поведении рулетки присутствовала некая закономерность, однако «счастливых» чисел на ней не было. Этье понимал, что большинству игроков пользоваться его методом уже поздно: с тех пор как Хибс и Уолфорд сорвали в Рино большой куш, рулетки со смещением практически исчезли из казино. Но рулетке недолго оставалось быть непобедимой.


Находясь на самом глубоком уровне незнания и не понимая причин отдельных явлений, единственное, что мы можем сделать, — осуществить наблюдение за множеством явлений и понять, существует ли между ними закономерность, она же паттерн. Как мы видим, этот статистический подход хорошо работает с дефектной рулеткой. Не имея знаний о ее физических особенностях, мы тем не менее можем прогнозировать ее поведение.