Митохондрии и старение

Почти 10 лет назад, в 2013-м, были сформулированы 9 признаков старения, практически общепризнанные к настоящему времени (Carlos López-Otín et al., 2013):

1) нестабильность генома;

2) укорочение теломер;

3) эпигенетические изменения;

4) нарушение протеостаза;

5) дерегуляция восприятия питательных веществ;

6) митохондриальная дисфункция;

7) клеточное старение;

8) истощение пула стволовых клеток;

9) изменение межклеточного взаимодействия.

...

Александр Фединцев и Алексей Москалев (Fedintsev А. and Moskalev А., 2020) называют дополнительным признаком старения накопление случайных изменений межклеточной среды, обозначаемую как неферментативная модификация долгоживущих молекул межклеточного матрикса (10).

Разумеется, все эти признаки тем или иным образом взаимосвязаны. Легко можно заметить, что большинство этих признаков, если не все, в той или иной мере связаны с работой митохондрий (хотя сама по себе дисфункция митохондрий не ведет автоматически к проявлению всех остальных признаков старения, то есть, собственно, к самому старению).

Джеймс Чапмен, Эдвард Филдер и Жоан Пассос (James Chapman, Edward Fielder and Joao F. Passos, 2020) считают ключевой в развитии старения именно связку дисфункции митохондрий и клеточного старения (сенесценции). Сенесцентные («резко состарившиеся») клетки характеризуются не только полной остановкой клеточного деления (что было бы достаточно естественно для полностью дифференцировавшихся клеток), но и переходом в так называемое SASP состояние (Senescence Associated Secretory Phenotype — секреторный фенотип, ассоциированный со старением). Сенесцентные клетки секретируют вовне огромное количество провоспалительных цитокинов, хемокинов, протеаз и факторов роста, что оказывает негативное влияние на их непосредственное окружение и даже может отражаться на состоянии достаточно удаленных органов и тканей. Это может вести как к возникновению воспалительных, так и опухолевых процессов, и через это, к развитию типичных возрастных заболеваний. В животных моделях своевременное удаление сенесцентных клеток из определенных органов и тканей замедляет или даже останавливает прогресс таких возрастных патологий. На сегодняшний день или в клинических, или в модельных исследованиях связь накопления сенесцентных клеток с развитием патологии показана для порядка двух десятков возрастных заболеваний — от атеросклероза и аллопеции до остеопороза и саркопении.

Нужно отметить, что метаболически сенесцентные клетки даже более активны, чем нормальные, они поглощают больше кислорода, быстрее окисляют углеводы и липиды, производят больше энергии и АФК. В то же время их уровень антиоксидантной защиты и вообще устойчивости к апоптозу весьма высок. В каком-то смысле их можно назвать неубиваемыми «зомби-клетками», и соседство с ними весьма токсично и также может вести к «зомбированию». Основной версией возникновения сенесцентных клеток считаются различного рода стрессовые для клетки ситуации, например оксидативный стресс, активация внутренних онкогенов или модификации хроматина (Kuilman T., 2010). Можно даже предполагать, что это неудачная или незаконченная попытка спонтанного «беспричинного» самоубийства клетки, обусловленного, в частности, необходимостью гарантированного самоуничтожения в случае начала ракового [Раком в данной книге обозначаются все злокачественные опухоли, хотя в строгом смысле это лишь одна из разновидностей злокачественных новообразований.] перерождения. Возможно, это может быть судьбой не собственно апоптической клетки, а клетки-чистильщика, фагоцита-скэвенджера, пришедшей «подчищать» место клеточного самоубийства (БОН: глава XII). Дело в том, для сенесцентных клеток характерна высокая экспрессия на поверхности универсальных рецепторов CD36 (Saitu M. et al., 2018), а в обычных условиях таким свойством обладают в том числе многие фагоциты-чистильщики. Возможно, какие-то события на месте заставляют фагоцит сначала «зомбироваться» самому, а далее «зомбировать» свое окружение, заставляя соседние клетки повторять свой SASP фенотип, что могло бы напоминать прионное инфицирование (когда прионы — извращенные белки-укладчики — заставляют вступившие с ними в контакт другие восприимчивые белки так же извращенно укладываться и укладывать других БОН: глава VI).

...

В любом случае, как считается, сенесцентное состояние определенно предотвращает опухолевое развитие (Campisi J., 2001). То есть для целого организма лучше сенесцентное зомби, чем раковый годзилла-оборотень. Оба монстра «не боятся смерти», ни своей, ни чужой, и поэтому, как часто бывает, именно такие «не боящиеся смерти» элементы представляют особую опасность для «общественного порядка».

Есть предположение, что преходящее (временное) сенесцентное состояние, когда сенесцентные клетки в итоге тем или иным способом все-таки удаляются из организма, играет положительную роль в ряде острых процессов: например, заживления ран, восстановления ткани и в ходе эмбрионального развития (Munoz-Espin D., 2013; Demaria M., 2014) — своеобразное повторение сюжета «Отряда самоубийц» (Дэвид Эйер, 2016), когда «отмороженные» антисоциальные элементы в силу своей разрушительной эффективности были привлечены к выполнению задач «спасения мира», а потом уничтожены или возвращены в места постоянной изоляции. Сохраняющаяся же персистенция сенесцентных клеток неизбежно ведет к развитию хронического воспаления, которое само по себе давно считается важнейшей причиной нарушения в работе митохондрий, ведущих к ускорению старения. Сочетание хронического воспаления и старения вообще уже многими исследователями считается единым процессом — inflammaging («староспаление»). Подавление хронического воспаления, соответственно, может вести к замедлению старения. Лучшим способом добиться этого может стать применение горметических факторов, таких, например, как тренировки (БОН: глава IV) и удаление факторов, стимулирующих воспаление, таких, как ожирение. Умеренное (горметическое) стрессовое воздействие на митохондрии ведет к ответной адаптивной реакции, улучшающей их эффективность (Tapia P. C., 2006). Тем не менее воспаление, развивающееся в ответ на инфекцию и инициирующее восстановление нанесенных инфекцией повреждений, использует для этой задачи митохондрии, изменяя их функционирование на усиленную выработку АФК (WestA. P. et al., 2011). Хотя адекватный воспалительный ответ критически важен для выживания, он может быстро ускорять процесс старения, если становится хроническим. Таким образом, оптимальное здоровье не должно рассматриваться просто как отсутствие заболеваний, но, скорее, как постоянное формирование все более надежной системы, все более способной поддерживать гомеостаз перед лицом различных угроз и вызовов. Предполагается, что гормезис отбирает наиболее эффективные ЭТЦ, которые замедляют неизбежную петлю положительной обратной связи: воспаление ведет к митохондриальной дисфункции, митохондриальная дисфункция стимулирует воспаление.

Возможная квантовая механика эволюции

Эволюция также производит отрицательный отбор неэффективных ЭТЦ. Возникшие на основе ЭТЦ врожденная иммунная система и программируемая клеточная смерть — это древнейшие механизмы защиты, возникшие еще у прокариот (Allocat N. et al., 2015; Marraffini L. A., 2015; Heussler G. E., 2015). Постоянная тонкая поднастройка ЭТЦ, необходимая для выживания видов, следовательно, также должна быть очень древним механизмом. Очень вероятно, что она построена на некоторых квантовых эффектах, а для современных теплокровных животных включает основанное на них регулирование температуры.

...

КВАНТОВЫЕ ЭФФЕКТЫ В БИОЛОГИИ (из Алистер Нанн, Джефри Гай и Джимми Белл, 2018)

Живые системы поглощают энергию с целью сохранения и использования информации. Эффективное применение свободной энергии дает возможность для создания высокоупорядоченного состояния, которое может становиться более эффективным и более приспособленным в рамках естественного отбора. Живые системы экспортируют неупорядоченность, выполняя тем самым второе начало термодинамики.

(1) Естественный отбор возникает между макромолекулами, настроенными на использование квантовых эффектов, основанных на универсальных механизмах переноса зарядов в живой материи (Vattay G. et al., 2014, 2015).

(2) Базовые квантовые эффекты, такие как спутанность и туннелирование, — одна из возможных причин возникновения и поддержания жизни (Tamulis A. and Grigalavicius M., 2011, 2014; Trixler F., 2013).

(3) Первые объективные свидетельства квантовых эффектов в живых системах получены для фотосинтеза, использующего туннелирование электронов (Engel G. S. et al., 2007; Fassioli F. et al., 2014).

(4) Туннелирование электронов служит одним из механизмов их переноса в ЭТЦ (Hayashi T. and Stuchebrukhov A. A., 2011; Moser C. C. Et al., 2006; de Vries S. et al., 2015). Дополнительным свидетельством подобных переносов в ЭТЦ при дыхании и фотосинтезе является образование ферментативных суперкомплексов, обнаруживаемых во всех порядках организмов (Dudkina N. V. et al., 2015; Lapuente-Brun E. et al., 2013; Melo A. N. P. And Teixeira M., 2016).

(5) В живых системах обнаружен феномен квантового биения, в частности в системе фотосинтеза (Engel G. S. et al., 2007; Lim J. et al., 2015; Craddock T. J. et al., 2014).

(6) Бактерии в колониях и биопленках способны делиться электронами. Перенос электронов возможен как между бактериями одного вида, так и разных, и, вероятно, на сравнительно большие расстояния. Подобный перенос между археями и бактериями мог сыграть роль в возникновении и развитии эукариот (Winkler J. R. and Gray H. B., 2014; McGlinn et al., 2015; Pfeffer C. et al., 2012; Wegener G. et al., 2015).

(7) Ионные каналы играют ключевую роль в функционировании головного мозга. Проводимость ионных каналов может быть описана в терминах квантовой механики (Moradi N., 2015; Summhammer J., 2012).

(8) Квантовая теория обоняния (Gane S. et al., 2013, БОН: глава XIII).

Алистер Нанн, Джефри Гай и Джимми Белл (2016) выстраивают следующую последовательность рассуждений. Митохондриальный потенциал может управлять когерентностью и облегчать квантовое туннелирование электронов (а также, возможно, контролировать другие функции, связанные с когерентностью, такими как работа ферментов или состояние ионных каналов). Это может быть двухфазный процесс, сначала увеличивающий эффективность митохондрий, когда уровень АТФ растет, уровень АФК падает. Но при чрезмерной эффективности митохондрий для определенного состояния клетки процесс выработки АТФ должен тормозиться с увеличением избытка АФК. Термодинамически это может изначально способствовать выживанию отдельной клетки, далее инициируется репликация, и, если необходимо, вызывается клеточная смерть. Этот процесс может считаться горметическим. ЭТЦ в принципе может участвовать в передаче сигнала с помощью АФК и в других системах. Например, механизм свободнорадикальных пар с возникновением квантовой запутанности электронов, источником которых является ЭТЦ, обеспечивает навигационную способность птиц (Zhang Y. et al., 2015). Исходя из этого можно принять, что любой сдвиг в потоке электронов и/или протонов, или через изменение входного потока электронов, или изменение доступности электронов, или формы клеток, или через повреждение клетки, может очень быстро генерировать сигнал, который немедленно изменяет функционирование митохондрий. Эффекты митохондриальной динамики могут быть рассмотрены в новом свете, если принять возможным, что слияние митохондрий может усиливать квантовую сигнальную систему в целой клетке. При этом система может быть изменена и в обратную сторону расщеплением конгломерата митохондрий.

Понимание взаимоотношений и разграничений между когерентной микроскопической квантовой реальностью и преимущественно декогерентным макроскопическим (видимым) миром стало бы грандиозным шагом в понимании базовых механизмов жизни. Например, наложение декогерентной внешней среды на когерентную внутреннюю среду митохондрий практически моментально меняет их состояние. Внедрение временной декогерентности в систему, базирующуюся на когерентности, такой, как ЭТЦ, может стать сигналом запуска адаптивной функции, например через образование АФК. Окружающая среда модулирует работу митохондрий на грани квантовой и классической физической реальности. То есть митохондрион может действовать как сенсор, балансирующий между квантовым и классическим миром. Любое изменение системы мгновенно изменяет ситуацию на ее выходе.