Толкаем гири, но не забываем про соседей

Однако продемонстрированное влияние физических упражнений как горметического стресса на состояние здоровья умножается на 0 или на 10 одним очень важным фактором, находящимся в настоящее время в фокусе внимания сотен исследовательских групп — состоянием микробиома, в первую очередь микробиома кишечника. Микробиом может в значительной степени модулировать физиологическую результативность физических упражнений через ряд сравнительно хорошо исследованных механизмов, связанных, например, со стимуляцией вегетативной нервной системы. Реакция на стресс, в том числе горметический, определяется статусом этой системы, находящейся под постоянным влиянием оси взаимного влияния «мозг-кишечник», где роль ведущего канала взаимодействия играет блуждающий нерв. Функциональность этой оси также «администрируется» через выработку нейротрансмиттеров, таких как гамма-аминомасляная кислота (ГАМА), нейропептид Y, серотонин, а также биологически сверхактивных короткоцепочечных жирных кислот, и оборот этих соединений в значительной степени контролируется кишечной микрофлорой (БОН: глава VIII). Фундаментально кишечная микрофлора также контролирует всасывание питательных веществ, то есть, по сути, общее поступление энергии в организм хозяина.

...

Менее исследованным, но более интересным, и, на мой взгляд, гораздо более многообещающим в силу возможного синергического эффекта на здоровье является обратное влияние физических упражнений на состав и состояние микрофлоры. Наиболее часто в результате систематических физических упражнений (см. обзор Clark A., Mach N., 2016) исследователи обнаруживают рост микробного разнообразия кишечника, снижение соотношения Firmicutes/Bacteroidetes (хотя есть и прямо противоположные результаты), увеличение содержания бактерий рода Akkermansia и бактерий-производителей масляной кислоты, то есть всего того, чего энтузиасты главенства кишечного микробиома в его симбиозе с человеком пытаются достичь самыми разнообразными и неординарными способами, включая пересадку кала от «здоровых» индивидуумов больным.

В качестве предполагаемых механизмов различные группы исследователей называют ускорение транзита пищи через ЖКТ (Oettlé GJ, 1991), изменение профиля желчных кислот (Hagio M. et al., 1985), увеличение выработки короткоцепочечных жирных кислот (Cerda B., 2016), модулирование сигнальных путей клеточных иммунных toll-like рецепторов (Fracaux M., 2009; Frosali S., 2015), изменение уровня защитных секреторных иммуноглобулинов А (Viloria M. et al., 2011), количества В-лимфоцитов и CD4+ Т-лимфоцитов, и даже, парадоксальным образом, через вызванную нагрузками потерю веса (Turnbaugh P. J. et al., 2006). Остается вопрос, какой из механизмов в этой сложной комбинации эффектов все-таки является ведущим. Связующим звеном взаимного влияния физических упражнений на кишечный микробиом и микробиома на эффективность упражнений может оказаться, например, обнаруженное торможение выработки белков теплового шока в клетках кишечного эпителия в результате длительных упражнений, что ведет к упрочению плотных связей между ними и снижению проницаемости кишечника (Dokladny K. et al., 2016; Mailing L. J., 2019).

Не будет удивительным, что взаимное положительное влияние микрофлоры и клеток кишечника в значительной степени опосредованно митохондриями последних, что особенно проявляется в ходе физических нагрузок (Clark A. and Mach N., 2017). Так, микрофлора снабжает митохондрии их любимыми короткоцепочечными жирными кислотами (КЦЖК) — масляной (бутиратом) и уксусной (ацетатом). Благодаря бутирату «накачанные» митохондрии активнее вырабатывают PGC-1α и АМРК, что в данном случае «успокаивает» провоспалительный настрой клетки, связанный с NF-кВ, и стимулирует биогенез митохондрий (нарастание их количества и массы). Кроме того, вместе с вторичными желчными кислотами КЦЖК позволяют выстроить в просвете кишечника оптимальный окислительно-восстановительный потенциал, необходимый как для наилучшей производительности ЭТЦ, так и самочувствия кишечных бактерий. Благодаря оптимизированной функции митохондрий, в свою очередь, улучшаются иммунные свойства слизистой кишечника, ее способность противостоять возможному вторжению патогенов. Очень важным комплексным эффектом нормально функционирующих митохондрий в клетках кишечной стенки является нормализация ее проницаемости.

Летучие мыши, чей образ жизни, как обсуждалось, в плане физической нагрузки достаточно сильно отличается от остальных млекопитающих, также весьма основательно отличаются от других млекопитающих и по типичному составу микрофлору, приближаясь в этом отношении к птицам — животным, в чем-то более к ним близким по образу жизни и характеру физической нагрузки (Lutz H. L. et al., 2019).

В итоге оказывается, что физическая нагрузка в качестве горметического стресса, действуя на весь организм в самом широком смысле, то есть включающем его микробиом, запускает процесс благотворной адаптации также всего организма в самом широком смысле, что может как кратно увеличивать, так и нивелировать эффективность нагрузки. Это простое рассуждение приводит к необходимости постараться рассмотреть вопросы энергии и движения, в том числе движения эволюции, в контексте постоянного тесного взаимодействия взаимозависимых геномов.

Библиографический список

1. Селье Г. (1982). Стресс без дистресса. — М: Прогресс.

2. ФГБУН «ФИЦ Питания, биотехнологии и безопасности пищи» (2020). Оценка влияния регулярного употребления воды с высоким содержанием бикарбоната натрия на анаэробную производительность. Отчет о научно-исследовательской работе.

3. Александер Д., Райхлен Д. (2020). Зачем мозгу физические упражнения? ВМН, № 3, с. 5–11.

4. Понцер Г. (2017). Парадокс физической активности. ВМН, № 4, с. 27–33.

5. Понцер Г. (2019). Эволюция и тренировки. ВМН, № 3, с. 5–13.

6. Шубин Н. (2008). Внутренняя рыба. История человеческого тела с древнейших времен до наших дней. — М.: Династия.

7. Radak Z., Chung H. Y., Koltai E., Taylo, A. W., Goto S. (2007). Exercise, oxidative stress and hormesis, Ageing Res. Rev. 170.

8. Malm C., Sjodin T. L., Sjoberg B., Lenkei R., Renstrom P., Lundberg I. E., Ekblom B. (2004). Leukocytes, cytokines, growth factors and hormones in human skelet al. muscle and blood after uphill or downhill running. J. Physiol. 556, 983–1000.

9. Peake J. M., Nosaka K., Muthalib M., Suzuki K. (2006). Systemic inflammatory responses to maximal versus submaximal lengthening contractions of the elbow flexors. Exerc. Immunol. Rev. 12, 72–85.

10. Goto S., Radak Z. (2005). Proteins and exercise. In: Mooren, F. C., Volker, K. (Eds.), Molecular and Cellular Exercise Physiology, Human Kinetics. Champaign, USA, 55–71.

11. Nieman D. C., Wentz L. M. (2019). The compelling link between physical activity and the body’s defense system. J Sport Health Sci; 8: 201–17.

12. Radak Z., Ishihara K., Tekus E., Varga C., Posa A., Balogh L., Boldogh I., Koltai E. (2017). Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biology 12, 285–290.

13. Windsor M. T., Bailey T. G., Perissiou M., Meital L., Golledge J., Russell F. D., Askew C. D. (2018). Cytokine Responses to Acute Exercise in Healthy Older Adults: The Effect of Cardiorespiratory Fitness. Front. Physiol. 9: 203.

14. Fischer C. P. (2006). Interleukin-6 in acute exercise and training: what is the biological relevance? Exercise Immunology Review, 6–33.

15. Leal L. G., Lopes M. A., Batista M. L. (2018). Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Front. Physiol. 9: 1307.

16. Northoff H., Berg A. (1991). Immunologic mediators as parameters of the reaction to strenuous exercise. Int J Sports Med 12, Suppl, 1: S, 9–15.

17. Larrabee R. C. (1902). Leukocytosis after violent exercise. J Med Res (NS); 7: 76–82.

18. Kishimoto T. (1989). The biology of interleukin-6. Blood 74: 1–10.

19. Kerksick С. М., Wilborn C. D., Roberts M. D., Smith-Ryan A., Kleiner S. M., Jäger R., Collins R., Cooke M., Davis J. N., Galvan E., Greenwood M., Lowery L. M., Wildman R., Antonio J., Kreider R. B. (2018). ISSN exercise & sports nutrition review update: research & recommendations. Journal of the International Society of Sports Nutrition 15: 38.

20. Chycki J., Kostrzeva M., Maszczyk A., Zajac A. (2021). Chronic ingestion of rich-bicarbonate water improves anaerobic performance in hypohydrated elite combat sport athletes. Int J of Env Res and Public Health, 18.

21. Nicholls D. G., Bernson V. S., Heaton G. M. (1978). The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation Experientia Suppl.,Vol. 32., 89–93.

22. Rupprecht A., Sittner D., Smorodchenko A., Hilse K. E., Goyn J., Moldzio R., Seiler E., Anja U., Brauer A. E. M., Pohl E. E., (2014). Uncoupling Protein 2 and 4 Expression Pattern during Stem Cell Differentiation Provides New Insight into Their Putative Function. PLoS ONE 9(2): e88474.