23. Chaudhuri L., Srivastava R. K., Kos F., Shrikant P. A. (2016). Uncoupling protein 2 regulates metabolic reprogramming and fate of antigen-stimulated CD8+ T cells, Cancer Immunol Immunother. 65 (7): 869–874.

24. Echtay K. S., Winkler E., Bienengraeber M., Klingenberg M. (2000). Site-directed mutagenesis identifies residues in uncoupling protein (UCP1) involved in three different functions. Biochemistry; 39: 3311–3317.

25. Dietrich M. O., Andrews Z. B., Horvath T. L. (2008). Exercise-Induced Synaptogenesis in the Hippocampus Is Dependent on UCP2-Regulated Mitochondrial Adaptation. Journal of Neuroscience 15 October, 28 (42): 10766–10771.

26. Raschke S., Elsen M., Gassenhuber H., Sommerfeld M., Schwahn U., Brockmann B., Jung R., Wisløff U., Tjønna A. E., Raastad T., Hallén J., Norheim F., Drevon C. A., Romacho T., Eckardt K., Eckel J. (2013). Evidence against a Beneficial Effect of Irisin in Humans//PLoS ONE. — September 11 (Vol. 8, № 9), e73680.

27. Raichlen D. A., Klimentidis, Y. C., Bharadwaj, P. K., Alexander G. E. (2019). Differential Associations of engagement in physical activity and estimated cardiorespiratory fitness with brain volume in middle-aged to older adults in Brain Imaging and Behavior.

28. Raichlen D. A., Alexander G. E. (2017). Adaptive capacity: an evolutionary neuroscience model linking exercise, cognition, and brain health. Trends in Neurosciences, Vol. 40, № 7, 408–421.

29. Clark A., Mach N. (2016). Exercise-induced stress behavior, gut microbiota-brain axis and diet: a systematic review for athletes. Journal of the International Society of Sports Nutrition, 13–43.

30. Zeppa S. D., Agostini D., Gervasi M., Annibalini G., Amatori S., Ferrini F., Sisti D., Piccoli G., Barbieri E., Sestili P., Stocchi V. (2020). Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients 2020, 12, 17.

31. Oettlé G. J. (1991). Effect of moderate exercise on bowel habit. Gut, 32, 941–944.

32. Hagio M., Matsumoto M., Yajima T., Hara H., Ishizuka S. (1985). Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces. J. Appl. Physiol., 109, 663–668.

33. Cerda B., Perez M., Perez-Santiago J. D., Tornero-Aguilera J. F., Gonzalez-Soltero R., Larrosa M. (2016). GutMicrobiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health, Front. Physiol., 7, 51.

34. Francaux M. (2009). Toll-like receptor signalling induced by endurance exercise. Appl. Physiol. Nutr. Metab., 34, 454–458.

35. Frosali S., Pagliari D., Gambassi G., Landolfi R., Pandolfi F., Cianci R. (2015). How the Intricate Interactionamong Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology. J. Immunol. Res., 2015, 489821.

36. Viloria M., Lara-Padilla E., Campos-Rodríguez R., Jarillo-Luna A., Reyna-Garfias H., López-Sánchez P., Rivera-Aguilar V., Salas-Casas A., Berral de la Rosa F.J., García-LatorreE. (2011). Effect of moderate exercise on IgA levels and lymphocyte count in mouse intestine. Immunol. Investig., 40, 640–656.

37. Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1031.

38. Mailing L. J., Allen J. M., Buford T. W., Fields C. J., Woods J. A. (2019). Exercise and the Gut Microbiome: A Review of the Evidence, Potential Mechanisms, and Implications for Human Health. Exerc. Sport Sci. Rev. 2019, 47, 75–85.

39. Dokladny K., Zuhl M. N., Moseley P. L. (2016). Molecular Adaptations to Exercise, Heat Acclimation, and Thermotolerance. J. Appl. Physiol. 15; 120 (6): 692–701.

40. Andrews P. W., Thomson J. A. Jr. (2009). The bright side of being blue: depression as an adaptation for analyzing complex problems. Psychol. Rev.; 116 (3): 620–54.

41. Stix G. (2021). Evolution Could Explain Why Psychotherapy May Work for Depression. Scientific American, February, 14.

42. Clark A., Mach N. (2017) The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front. Physiol. 8: 319.

43. Lutz H. L., Jackson E. W., Webala P. W., Babyesiza W. S., Kerbis Peterhans J. C., Demos T. C., Patterson B. D., Gilbert J. A., (2019). Ecology and host identity outweigh evolutionary history in shaping the bat microbiome. mSystems, 4: e 00511–19.

Глава V. Цель — все и ничто

Только хорошо поняв второе начало термодинамики, можно ответить на вопрос, почему вообще возможна жизнь.

Карло Черчиньяни (1998), итальянский математик, физик-теоретик, поэт и эссеист

Энтропия к месту и не очень

Разумеется, в эволюционном движении живого, как разновидности движения материи и энергии, нет никакого предопределенного смысла, а тем более замысла — ни скрытого, ни тем более явного, несмотря на то что они «ясно видны» многим «посвященным». Если где-то в данной книге и используются выражения вроде «эволюция сделала вот это, чтобы решить вот то», на самом деле это всего лишь «обытовленное» объяснение динамики генетических ансамблей, к которым «принципы статистической физики применимы столь же, сколь и к ансамблям молекул» (Кунин Е. В., 2012).

Все формы взаимодействия в биологических и протобиологических средах (сложных органических молекул) можно в своих крайних пределах свести к двум формам: отношениям протагонистов или дружественности (сотрудничество, синтрофия, симбиоз, кооперация и т. д.) и отношениям антагонистов или враждебности (прямое соперничество, конкуренция, с одной стороны, и хищничество, паразитизм, зачастую вырастающий из сотрудничества, с другой). Граница между ними тонкая, если не зыбкая; нейтральных же взаимодействий, пожалуй, нет совсем. Соответственно, ответ на вопрос, на каких этапах развития материи и в какой последовательности эти явления возникают, и каким образом они вытекают из оснований статистической физики, может стать и предвестником ответа на вопрос о сущности болезней, воспринимаемых часто как потери совершенства изначально почти безупречных организмов или как прямые следствия их некоего изначального несовершенства. Представляется, однако, что именно несовершенства, как отклонения от совершенного низкоэнтропийного «идеала», реальные или кажущиеся, и делают живой (и не только живой) мир таким, каков он есть: развивающимся от простого к все более сложному, постоянно генерирующим что-то новое, неизбежно забывающим и неизбывно повторяющим (почти) все старое, в котором все в отдельности неизбежно скоро заканчивается и когда-то закончится и все целиком.

В третьей главе на отдельных примерах были кратко рассмотрены квантовые и энтропийные основания базовых энергетических предпосылок жизни и сопутствующая им диссипативность, то есть «набор свойств открытой, неравновесной, рассеивающей энергию системы, движимой градиентом энергии, что увеличивает энтропию окружающей среды». Несомненно, что физические, в первую очередь термодинамические основания, второе начало термодинамики являются наиболее всеобъемлющим оправданием существования всего живого с его общим движением к нарастанию энтропии, но с неизбежным возникновением локальных и преходящих ее снижений (флуктуаций), то есть упорядочиваний хаоса. Рассмотрение энтропии как чистой «меры беспорядка» может запутать: очевидно, что энтропия «покоящейся» системы — ровного песка в пустыне, сбалансированной группы клеток, стагнирующего человеческого общества — гораздо выше, соответственно, энтропии осыпающегося бархана, смеси клеток хозяев и клеток новых паразитов, общества в состоянии революции и гражданской войны, ввиду того, что совокупность или возможность «выбора» доступных состояний для каждой единицы или вариантов совокупностей микросостояний в «спокойной» системе гораздо больше возможностей выбора в состоянии «революции».

...

Так, лидер партии «Яблоко» Григорий Явлинский в своей статье «Политическая энтропия. Цифровые технологии и глобализация беспорядка» (2020) предполагает, что на смену эпохи глобализации, предположительно, более упорядоченной, приходит «век беспорядка», где «существует множество труднопредсказуемых событий и развилок, и куда, как говорится, кривая выведет, не знает никто». И этот переход с ростом беспорядка предполагается рассматривать как рост «политической энтропии». Однако более правильным будет скорее обратное — падение энтропии: несмотря на возникновение потоков событий с непредсказуемой динамикой, для отдельных людей — совокупности элементов системы — количество вариантов выбора («свободы») на самом деле уменьшается, о чем совершенно справедливо указывает и сам Г. Явлинский в заключение своей статьи, связывая это в первую очередь с добровольным отказом людей от свободы выбора, нежели направленной деятельностью авторитарных лидеров. Отдельный большой вопрос, разумеется, насколько этот выбор на самом деле доброволен, но несомненно, что само уменьшение свободы выбора для подавляющего большинства элементов системы — это несомненно снижение ее энтропии. Тем более актуальное в свете взрывного развития информационных технологий и роста все более детализированной информации о системе. Информации, к сожалению, неравномерно распределяемой, но в итоге дающей уменьшение неполноты информации о системе (см. ниже), что также показывает скорее падение «политической энтропии», нежели ее возрастание. И тем более, что «добровольный отказ от свободы» и рост информационной насыщенности общественного пространства могут оказаться двумя сторонами одной медали.