Если вы (пока еще) не считаете себя от природы одаренными в математике и естественных науках, вас может удивить тот факт, что мозг создан для выполнения сложных расчетов. Именно такие расчеты позволяют нам ловить мяч, раскачиваться на стуле, объезжать на машине дорожные ямы. Мы производим непростые вычисления и решаем головоломные уравнения бессознательно, не отдавая себе отчета в том, что решение нам известно задолго до того, как мы придем к нему долгим путем [Sklar et al. 2012; Root-Bernstein and Root-Bernstein 1999, chap. 1.]. На самом деле чутье и способности к математике и естественным наукам есть у каждого. Нужно лишь освоить терминологию и соответствующую культуру.

В процессе создания этой книги я общалась с сотнями людей — лучшими в мире преподавателями математики, физики, химии, биологии и инженерных наук, а также преподавателями педагогики, психологии, нейробиологии и таких дисциплин, как бизнес и здравоохранение. Я поражалась тому, насколько часто эти специалисты мирового класса использовали при изучении своих наук ровно те же методы, которые описываются в этой книге. Этим же приемам они пытались научить и своих студентов, однако поскольку такие методики порой кажутся нелогичными и даже иррациональными, то преподавателям не всегда удавалось убедить студентов ими пользоваться. Более того, некоторые из этих способов передачи и получения знаний часто высмеиваются учителями из числа заурядных, поэтому знаменитые преподаватели доверяли мне свои секреты довольно сдержанно, не зная, что множество других их коллег того же масштаба применяют те же приемы. Эти советы лучших профессоров мира теперь, собранные воедино, представлены и вам для изучения и применения на практике. Методы, описанные в этой книге, особо ценны для случаев, когда вам нужно получить и хорошо усвоить глубокие знания за ограниченное время. Вам также будут полезны советы людей, которые, как и вы, учатся и по собственному опыту знают все возможные трудности и ограничения.

Помните: это издание — для тех, кто уже овладел математикой, и для тех, кто боится к ней подступиться. Я написала ее для того, чтобы облегчить вам изучение математики и естественных наук, независимо от вашей былой успеваемости и от вашего мнения о собственной пригодности к обучению. Из моей книги вы узнаете о мыслительных процессах и о том, как ваш мозг усваивает новые знания, а также о том, как он порой убеждает вас, будто вы чему-то учитесь, хотя на самом деле никакого обучения не происходит. Книга также содержит множество упражнений по развитию навыков обучения, которые вы можете применить к вашим текущим занятиям.

Если вы уже поднаторели в математике и естественных науках, эти советы помогут вам совершенствоваться, принесут радость, разовьют творческий подход и придадут изящества вашим уравнениям.

Если вы попросту уверены в том, что не имеете способностей к математике и естественным наукам, эта книга может вас переубедить. Вы, возможно, этому не поверите, но все же получите надежду. Когда вы попробуете применить на практике советы, приведенные здесь, вы с удивлением обнаружите в себе перемены, которые откроют вам путь к новым увлечениям.

Эта книга поможет вам добиваться лучших результатов и подходить к делу творчески — не только в математике, но и во всем, чем вы занимаетесь.

А теперь к делу!

2. Легкость — лучший подход

Почему излишняя старательность может быть вредна

Если вы хотите проникнуть в некоторые важнейшие тайны изучения математики и естественных наук, взгляните на эту фотографию.

Мужчина справа — легендарный шахматный гроссмейстер Гарри Каспаров. Мальчик слева — 13-летний Магнус Карлсен. Карлсен только что отошел от шахматной доски в разгаре партии в быстрые шахматы — игры, не предусматривающей длительного обдумывания ходов и стратегии. Это примерно как решить вдруг сделать заднее сальто, идя по канату над Ниагарским водопадом.

Да, Карлсен выбивал противника из колеи, и Каспаров, вместо того чтобы разгромить дерзкого мальчишку, сыграл вничью. Однако гениальный Карлсен, который впоследствии стал самым молодым шахматистом, добившимся наивысшего шахматного рейтинга, не просто вел интеллектуальное сражение со старшим противником. Понимание общего подхода Карлсена может дать нам ключ к процессам, происходящим в мозгу, когда человек изучает математику и естественные науки. Прежде чем рассматривать то, как Карлсен противостоял Каспарову, нам нужно остановиться на нескольких важных принципах человеческого мышления (а к Карлсену мы еще вернемся, не сомневайтесь!).

В этой главе мы коснемся некоторых основных тем нашей книги, поэтому не удивляйтесь тому, что вам придется переключать восприятие с одного предмета на другой. Способность переключать внимание — сначала ухватывать деталь изучаемой общей картины, а потом возвращаться к предмету для полного понимания происходящего — сама по себе составляет один из главных предметов этой книги.


Тринадцатилетний Магнус Карлсен (слева) и легендарный Гарри Каспаров на турнире по быстрым шахматам в Рейкьявике, 2004 г. На лице Каспарова проступает явное недовольство


...
ВАША ПОПЫТКА!
Настройте свой «мыслительный насос»

Когда вы впервые начинаете просматривать главу учебника по математике или естественным наукам, полезно пробежать глазами весь раздел, составляя себе общую картину: взглянуть не только на схемы, диаграммы и фотографии, но и на заголовки разделов, выводы и даже на вопросы в конце текста (если они есть). На первый взгляд такой подход кажется нелогичным — вы ведь еще не читали главу! — однако он помогает настроить «мыслительный насос». Попробуйте прямо сейчас проглядеть всю главу и вопросы в конце.

Вы удивитесь тому, насколько минута-другая, потраченная на такое предварительное просматривание новой главы, помогает упорядочить мысли. Таким способом еще до того, как начать внимательное ознакомление с текстом, вы создаете незаметные нейронные зацепки для восприятия, которые облегчат вам усвоение материала.

Мышление сфокусированное и мышление рассеянное

С самого начала XXI века нейробиология уверенными шагами продвигается к пониманию двух типов систем, попеременно используемых мозгом. Это системы, ответственные за состояние повышенного внимания и за более расслабленное состояние покоя [Andrews-Hanna 2012; Raichle and Snyder 2007; Takeuchi et al. 2011. Более общие сведения о состоянии покоя см. в: Moussa et al. 2012. В работе, посвященной другой линии исследования, Брюс Манган отмечает, что Уильям Джеймс при описании периферийного сознания упоминает следующую черту: «Существует “перемена” сознания, при которой периферия ненадолго, но часто выходит на передний план и начинает доминировать над центром внимания» (Cook 2002: 237; Mangan 1993).]. Мыслительные режимы, относящиеся к таким состояниям, мы будем называть соответственно «сфокусированным мышлением» и «рассеянным мышлением»; и то и другое очень важно при обучении [Immordino-Yang et al. 2012.]. В повседневной жизни ваше состояние часто меняется и вы пребываете либо в одном, либо в другом мыслительном режиме, а не совмещаете оба сразу. В рассеянном состоянии мозг способен незаметно, в качестве фонового процесса, обдумывать то, на чем вы в данный момент не сосредоточены [Эдвард де Боно — гроссмейстер по изучению креативности, предложенные им термины «вертикальное» и «латеральное» мышление примерно соответствуют моим терминам «сфокусированное» и «рассеянное» мышление (де Боно, 2012). // Внимательные читатели заметят мое упоминание того, что рассеянное мышление порой действует в фоновом режиме, при активном сфокусированном состоянии. Однако результаты исследований показывают, что нейронная сеть пассивного режима работы мозга (являющегося всего лишь одним из многих состояний покоя) успокаивается при активном сфокусированном состоянии. Так что же это? Как человеку и преподающему, и изучающему науки, мне кажется, что некоторая несфокусированная деятельность может продолжаться в фоновом режиме при сфокусированной работе, если сфокусированное внимание уведено из зоны интереса. Таким образом, в некотором смысле мое использование термина «рассеянный режим» может скорее пониматься как «деятельность в несфокусированном состоянии, направленная на обучение», а не просто «сеть пассивного режима работы мозга».]. А иногда вы можете переключаться в рассеянный режим на короткий миг.

Сфокусированное мышление крайне важно для изучения математики и естественных наук. Оно предполагает прямое обращение к решаемой задаче и использует рациональный, последовательный и аналитический подход. Такой тип мышления ассоциируется со способностью сосредотачиваться, связанной с префронтальным участком коры головного мозга (находящимся непосредственно за лобной костью) [Существуют также тесные связи с более далекими зонами мозга, как мы увидим далее в аналогии с вниманием-осьминогом.]. Стоит вам обратить на что-то внимание — и готово: сфокусированное мышление включилось, как четкий всепроникающий свет от ручного фонарика.


Префронтальный участок коры головного мозга находится за лобной костью


Рассеянное мышление тоже важно для изучения математики и естественных наук. Оно дает нам возможность испытывать внезапные озарения и находить неожиданные решения, когда мы бьемся над какой-нибудь задачкой. Также оно ассоциируется с широким ракурсом и способностью видеть всю картину целиком. Рассеянное мышление значит, что вы ослабляете внимание и мысли бродят как им захочется. Такое расслабление позволяет различным участкам мозга возвращать догадки и озарения в активную зону. В отличие от сфокусированного мышления рассеянное мышление почти не связано с конкретными участками мозга — оно как бы «рассеяно» по всему мозгу [Рассеянное мышление может быть также связано с префронтальными участками, однако оно, вероятно, имеет больше общих связей и отфильтровывает меньше нерелевантных связей.]. Озарения и догадки, приходящие в таком состоянии, часто берут начало в предварительных размышлениях, случающихся при сфокусированном мышлении. (Рассеянному мышлению, чтобы делать кирпичи, нужна глина!)

Изучение нового материала сопровождается «мигающими» нейронными процессами в разных участках мозга и передачей данных от полушария к полушарию [Психолог Норман Кук предположил, что «первый элемент центрального принципа человеческой психологии может быть определен как поток информации между: 1) правым и левым полушариями и 2) «доминантными» [левополушарными] и периферийными эффекторными механизмами, используемыми для вербального общения» (Cook 1989: 15). Однако также стоит отметить, что разница между полушариями часто становилась основой для бесчисленных необоснованных экстраполяций и неверных выводов (Efron 1990).]. Это значит, что думать и учиться — процесс более сложный, чем обычное переключение со сфокусированного на рассеянное мышление и обратно. К счастью, нам не нужно вдаваться в тонкости физиологических механизмов. Мы применим другой подход.