х’ = х + vt,

t’ = t.


Представьте, что какое-то тело находится в состоянии покоя в точке x и вы смотрите на него в момент времени t. Теперь предположим, что вы движетесь по отношению к данному телу со скоростью v. Тогда координата тела будет x’, время же при этом не изменится, а любая скорость V, которая может появиться в первоначальной системе, появится как новая скорость V’ в новой системе, таким образом, что


V’ = V + v.


Это и есть инвариантность Галилея — и это есть просто здравый смысл. Отсюда следует, что если частица просто движется в некотором направлении, то координата ее увеличивается в силу того, что частица находится в движении, время же не меняется под влиянием скорости, а скорости суммируются. Эта теорема толчка, разумеется, и есть первый закон Ньютона. Ньютоновские законы движения гласят, что силы, создающие ускорения, инвариантны при таком простом преобразовании.

Применяя законы Ньютона, невозможно отличить одно равномерное движение от другого. Они релятивистские в том смысле, что относительное движение можно наблюдать, — однако абсолютное движение, пока оно равномерно, т. е. пока оно происходит без ускорения, наблюдать невозможно.

Начиная с Ньютона и до самого конца XIX века физики на основании этих законов построили чрезвычайно точную и красивую науку, охватывающую механику небесных тел Солнечной системы, теорию газов, поведение жидкостей, упругие колебания, звук, — они построили столь стройную и разнообразную, всеохватывающую и, видимо, всесильную систему, что дальнейшее развитие даже трудно было предвосхитить.

Мне кажется, что единственное ясно выраженное сомнение относительно преобразования Галилея и механики Ньютона встретилось мне в труде Эйлера, написанном примерно за сто лет до появления теории относительности. Поскольку между фиксированной звездой и Землей имеет место относительное поперечное смещение, то звезда видна под углом, отличающимся от истинного направления. Эйлер установил, что при расчете данного отклонения в системе, связанной со звездой, и в системе, связанной с Землей, результаты не совпадали. В эксперименте разница была столь незначительна, что он не стал дальше рассуждать по этому поводу. Он лишь отметил наличие этой разницы.

Но в начале XIX века и с нарастающим напряжением в течение этого столетия велись исследования в другой области физики. Эти исследования не касались вопросов движения тел под действием сил тяготения. Они касались свойств света и электромагнетизма. В отличие от сегодняшнего дня в то время не возникал вопрос, является ли гравитация силой, действующей на расстоянии, или же сила притяжения распространяется непосредственно от одного тела к другому. В то время не было (да и сегодня тоже нет) надежных экспериментальных данных для установления разницы между этими двумя положениями. В принципе имеются хорошие средства для решения этой проблемы, и мы полагаем, что ответ нам известен, но мы его еще не проверили на практике. Что же касается электромагнитных сил, то здесь положение совершенно иное.

Мне думается, вы все наблюдали картину, которая получается, если на обычный стержневой магнит положить лист бумаги и насыпать железных опилок. При этом железные опилки создают совершенно определенный рисунок, образуя вокруг полюсов магнита линии, напоминающие параболы.

Уже в первой половине XIX века Фарадей наблюдал это явление. Он полагал, что пространство вокруг магнита, хотя и свободное от материальных тел, обладает физическим свойством, а именно наличием магнитного поля — силой, воздействующей на магнит. В самом деле, мелкие железные опилки играют роль магнитиков. Поле оказывает на них свое воздействие, они реагируют на него и поле проявляется через них. Подобно этому при приближении к заряженному электричеством стержню или шару предмета, имеющего заряд того же знака, возникает противодействующая сила, которая отталкивает его. Однако при приближении предмета с противоположным зарядом возникает притягивающая сила. Эти явления имеют место, когда объекты не находятся в соприкосновении: они порождаются неким свойством, характеризующим пространство, которое окружает электрический заряд или магнит. Фарадей говорил о силовых линиях и трубках, об электрических и магнитных потенциалах (это слово употреблено не в техническом значении), существующих в пространстве. Фарадей считал, что эти поля оживляют пространство. Поля можно было измерить: можно было определить их направление и их силу. Они были столь же осязаемы, как и реальные предметы, но они существовали в вакууме. В самом деле, поля действительно существуют в вакууме. Наличие атмосферы не имеет к ним никакого отношения. Они видоизменяются при наличии материальных тел, если таковые там присутствуют, но в то же время они существуют и в отсутствие этих тел. Конечно, это чем-то напоминает пресловутый эфир, т. е. пустое пространство, обладающее определенными свойствами.

Фарадей показал, что если быстро изменять магнитное поле, то появляется электрическое поле, а Максвелл теоретически доказал, что достаточно быстрое изменение электрического поля приводит к возникновению магнитного поля. Позже этот эффект получил подтверждение, хотя проверить его экспериментально значительно труднее, чем результат Фарадея. Действительно, Максвелл предсказал, что такого рода колебания поля, при которых электрическое и магнитное поля генерируют друг друга, могут свободно распространяться в отсутствие каких-либо зарядов и токов. Он произвел расчет скорости распространения колебаний и нашел, что она равна скорости света.

Таким образом, это поле Фарадея «деятельно». Оно не просто сосредоточено вокруг зарядов и магнитных диполей, оно передает электромагнитные волны. Оно передает все волны, которые питают телевизоры, управляют ракетами и позволяют нам благодаря радио наслаждаться замечательными плодами нашей культуры. Это поле передает свет и тепло, многие формы излучений высокой энергии — проникающие излучения, которые играют большую роль в ядерной физике. (Реальность созданных человеком длинных электромагнитных волн была установлена Герцем в конце XIX века.) Это густо заселенное пространство, которое полно всяких электрических и магнитных явлений, следующим образом связано с движущимися частицами: если мы имеем заряженный предмет, то он, безусловно, реагирует на силу тяготения (это универсальная сила), но он также реагирует на электрические поля, а если он в движении — то и на магнитные поля. Этот предмет ощущает дополнительный импульс, так как электрическое поле толкает его в направлении поля, а магнитное поле толкает его под прямым углом к полю и к направлению его собственной скорости. Законы этих воздействий на заряды были уже довольно хорошо изучены в конце прошлого и в начале нынешнего века, во всяком случае в той мере, в какой они касались предметов, движущихся не с чрезмерно большими скоростями. Однако концепция Максвелла о распространении электромагнитных волн света и вся основа его теории, равно как и интуитивное представление Фарадея о пространстве, сплошь заполненном полями, не согласовывались со свойством инвариантности Галилея. Это следует из общих соображений, так как если пространство заполнено электрическими и магнитными полями, оно не обязательно должно представляться тем же самым для наблюдателя, который движется по отношению к нему. Говоря более точно (и это действительно вызывает своего рода недоумение), надо отметить, что в соответствии с теорией Максвелла скорость света есть нечто фиксированное. Полученный им результат очень близок к наблюдаемым данным. Но если я движусь относительно среды, заполненной полями, то я должен как будто применить формулу V’ = V + v, из которой вытекает, что скорость видимого мною света составляет сумму (или разность) скорости моего движения и скорости света в среде. Скорость видимого мною света может быть больше или меньше, в зависимости от того, приближаюсь ли я к источнику света или удаляюсь от него. Именно это мнение и господствовало в конце прошлого и в начале нашего века. Однако оно было опровергнуто многочисленными косвенными методами и одним прямым экспериментом, одним из великих и решающих экспериментов в истории науки.

До того как эксперимент был проведен, представлялись возможными по крайней мере три альтернативы.

Во первых, можно было предположить, что существует система, в которой имеются электрические и магнитные поля, описываемые уравнениями Максвелла и подчиняющиеся им в своем поведении, и эта система уникальная; к ней применимо понятие абсолютного покоя, а все, что движется по отношению к этой системе, имеет вследствие своего движения другое физическое поведение. Принять такую альтернативу значило отказаться от закона инвариантности, полностью отказаться от идеи относительности, т. е. от относительности равномерного движения.

Во-вторых, можно было бы утверждать, что уравнения Максвелла, несмотря на то что они объясняют огромное множество явлений, в каком-то смысле неправильны, но сделать это было чрезвычайно трудно после полувекового успеха.