Можно сказать, что глубокое понимание замечательных свойств света явилось ключом ко всему. Более прочего поражает здесь то, что свет не только дает нам возможность видеть все вокруг, позволяя, в частности, исследовать Землю, Луну и звезды, но еще и теснейшим образом связан со временем, пространством и гравитацией.

Давайте обратимся к истории современной физики. Для Исаака Ньютона — автора теории тяготения — свет состоял из маленьких корпускул, то есть мельчайших частиц. Позже, в XIX веке, шотландский физик Джеймс Клерк Максвелл, взяв за основу блестящую революционную работу Майкла Фарадея, доказал, что свет и все другие формы излучения представляют собой электромагнитные волны. И радиосигналы, используемые в технологии Wi-Fi, сотовых телефонах или автомобильных радиоприемниках, и тепловое излучение, регистрируемое приборами ночного видения, и рентгеновские лучи, которые мы используем, чтобы рассмотреть кости под кожей, и даже видимый свет, который воспринимают наши глаза, — все это, согласно теории Максвелла, суть колебания электрических и магнитных полей. Они отличаются друг от друга только своей частотой и способами, с помощью которых мы их производим и измеряем. Но по сути все эти колебания представляют собой одно и то же явление, а именно — свет: видимый свет, свет с длиной волны из радио-, инфракрасного или рентгеновского диапазона.

В частотном диапазоне, используемом мобильными телефонами, волны колеблются миллиард раз в секунду, а их длина составляет больше 20 сантиметров. Волны видимого света колеблются секстиллионы раз в секунду, и их длина в сто раз меньше диаметра волоса. Поскольку световые волны определенного цвета и частоты всегда колеблются с одинаковой скоростью, свет является идеальным метрономом для часов и эталоном времени. Самые точные оптические часы на сегодня откалиброваны так, что их точность составляет более 10–19 секунд [S. M. Brewer, J.‐S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt. 27Al+ Quantum-Logic Clock with a Systematic Uncertainty below 10–18. // Physical Review Letters 123 (2019): 033201. https://ui.adsabs.harvard.edu/abs/2019PhRvL.123c3201B.]. За все время существования Вселенной (на сегодня это примерно 14 миллиардов лет) такие часы отстанут всего примерно на полсекунды! Это такая степень точности, о которой предыдущие поколения даже не мечтали.

Но что именно вызывает эти колебания? Долго считалось, что все космическое пространство заполнено так называемым эфиром. Имелся в виду не тот эфир, который растворитель, а эфир — гипотетическая среда, в которой электромагнитные волны (или световые, или радиоволны) распространяются во все стороны, как звуковые волны в воздухе.

Одним из свойств уравнений Максвелла — самым обескураживающим и неожиданным для физиков, причем остающимся таковым и по сей день, — является представление о том, что свет с любой длиной волны, распространяющийся в пустом пространстве, должен всегда двигаться с одной и той же постоянной скоростью, не зависящей от того, как быстро двигается наблюдатель. Рентгеновский луч столь же быстр, как радиоволна или лазерный луч, и в уравнениях Максвелла скорость света не зависит от скорости приемника или излучателя. То, что свет распространяется с конечной скоростью, мы знали самое позднее с конца XVII века, когда Оле Рёмер измерил движение спутников Юпитера и использовал их в качестве часов [Рёмер использовал орбиту спутника Юпитера Ио в качестве часов. Он заметил, что эти часы немного замедляют свой ход, когда Земля на своей околосолнечной орбите находится дальше от Юпитера по сравнению с тем, что было несколькими месяцами ранее. Свет от Юпитера доходил до Земли на несколько минут позже, чем должен был бы: “часы Ио” отставали.]. Но разве не должна скорость света меняться в зависимости от того, летишь ли ты с большой скоростью сквозь таинственный эфир или стоишь на месте?

Допустим, я плыву на серфборде в океане. Сильный ветер дует в сторону берега, а я гребу от него перпендикулярно линии прибоя. Волны приближаются ко мне с большой скоростью — на самом деле почти так же быстро, как они набегают на берег. Но если я меняю направление и быстро гребу в ту же сторону, куда устремлены ветер и волны, моя скорость почти равняется скорости волн под моим серфбордом. По сравнению с ним скорость волн мала, однако скорость волн относительно берега очень высока.

То же самое относится и к звуковым волнам. Если я еду на велосипеде при попутном ветре, звук клаксона едущего за мной автомобиля достигает моих ушей несколько быстрее, чем когда ветра нет, — и я слышу предупреждение немного раньше. Если же я поеду навстречу ветру, то услышу гудок сзади несколько позже: звук тоже распространяется против ветра. Если бы я мог крутить педали со сверхзвуковой скоростью, я никогда не услышал бы гудка. Если бы я крутил педали еще быстрее и опередил собственные звуковые волны, то преодолел бы звуковой барьер и создал ужасный шум, поскольку многие из производимых мною звуков достигли бы человека, слышащего их, одновременно. Но, в отличие от пилотов реактивных самолетов, ни одному велосипедисту еще не удалось преодолеть звуковой барьер.

Радиоволны должны вести себя подобным же образом — по крайней мере так думали люди более ста лет назад. По их представлениям эфир, в точности как воздух в нашей атмосфере, заполняет пустоту космического пространства, а Земля, бороздящая эфир со скоростью 100 000 километров в час по орбите вокруг Солнца, схожа с моим велосипедом или серфбордом. Если вы измерите скорость света в направлении движения Земли вокруг Солнца, то эта “скорость света” должна быть на самом деле совершенно другой, чем скорость, измеренная под прямым углом или в точно противоположном направлении. Иными словами, она должна зависеть от того, при “попутном” или “встречном” ветре движется свет в эфире.

Именно этот эффект пытались измерить американские физики Альберт А. Майкельсон [Майкельсон родился в Пруссии и в 2 года вместе с родителями переехал в США: https://www.nobelprize.org/prizes/physics/1907/michelson/biographical.] и Эдвард У. Морли в конце XIX века. Для этого они измерили относительную скорость света в двух световых коридорах (или каналах), расположенных перпендикулярно друг другу. Эксперимент закончился полной неудачей. Ученые не смогли увидеть сколько‐нибудь существенного различия в скоростях света. Таким образом, не было найдено прямых доказательств существования эфира — он оказался просто иллюзией.

Неудачи могут быть прорывными, и этот неудачный эксперимент стал одним из тех немногих, которые принято называть ключевыми, так как они направили развитие физики и астрономии по ее нынешнему пути. Дело в том, что совершенно неожиданный крах теории эфира обрушил всю систему взглядов и потому пришлось, отбросив старые модели, начать искать новые идеи. Лучшими из них оказались идеи молодого Альберта Эйнштейна [Достоверно не установлено, что на Эйнштейна существенным образом повлиял эксперимент Майкельсона-Морли. Вероятно, признаки относительности в поведении электромагнетизма были для него более важными. См. Jeroen Van Dongen. On the Role of the Michelson-Morley Experiment: Einstein in Chicago. // Archive for History of Exact Sciences 63 (2009): 655–63, https://ui.adsabs.harvard.edu/abs/2009ar Xiv0908.1545V.], который был готов радикально все переосмыслить и создать новую теоретическую основу физики. Пока другие физики все еще пытались пробить головой стену, Эйнштейн стремительно ворвался в новую эру, в которой пространство и время больше не были абсолютными. Возникла смелая теория — теория относительности Эйнштейна, существенно изменившая веками доминировавшую концепцию мироздания.

Мальчик мечтает о Луне

Совершив достаточное количество оборотов вокруг Земли, мы можем начать следующую фазу протокола, составленного для полета нашей космической капсулы, и направить эту капсулу на Луну. Путешествие на Луну было древней мечтой человечества. 20 июля 1969 года Нил Армстронг ступил на ее поверхность, совершив, возможно, самый известный шаг, когда‐либо сделанный человеком, — и мечта стала реальностью. Даже спустя несколько лет я все еще ощущал значимость этого момента.

Жаркий летний день 1971 года в маленьком городке Штромбах в горном районе земли Северный Рейн-Вестфалия. До самого горизонта тянутся мягкие зеленые холмы и леса. В небольшом районе частных домов на улице играют и веселятся дети. Ведерки и лопатки, трехколесный велосипед с родительской ручкой для толкания и пара мячей — все, что им нужно для счастья. Взрослые сидят во дворе в шезлонгах и наблюдают за детьми.

Но один маленький пухлощекий мальчик не играет со сверстниками, а сидит в темной комнате и как завороженный смотрит на мерцающие размытые черно-белые картинки на экране большого лампового телевизора. Лунный модуль “Аполлона-15” “Фалькон” только что “прилунился” и передает свои изображения на Землю. После первых захватывающих и очень успешных космических полетов воодушевление взрослых членов семьи Фальке, вызванное посадками на Луну, довольно быстро испарилось.

И только мальчик никак не может оторваться от экрана. Ему всего четыре года, и он еще не имеет ни малейшего представления о размерах космоса или расстоянии, которое астронавты НАСА должны были преодолеть, чтобы добраться до Луны. Он даже вообразить себе не может, сколько энергии потребовал данный технологический прорыв и насколько значительным является это научное достижение. И все же где‐то в глубине души он чувствует, каким захватывающим и грандиозным является это смелое предприятие. Мальчик наслаждается каждой секундой космического приключения, и его воображение разыгрывается все больше. Что вообще в этом мире может быть неосуществимым, если человек смог ходить по Луне, прыгать на ее поверхности и даже управлять лунным вездеходом (а именно это и делали астронавты “Аполлона-15”)? Что еще предстоит открыть человечеству в бесконечно огромном небе?

Этим мальчиком, конечно же, был я. Тогда мы провели несколько дней в гостях у моей двоюродной бабушки Герды. Астронавты, отправившиеся под командованием Дэвида Скотта на Луну, казались мне в детстве героями из комиксов. Командир Скотт и член экипажа Джеймс Ирвин прилунились на модуле “Фалькон” очень близко к Апеннинам — одному из крупнейших лунных горных хребтов, — в то время как третий астронавт, Альфред Уорден, облетал Луну в командном модуле. Когда Скотт ступил на поверхность Луны, он произнес нечто глубоко человеческое: “Я вроде как понял, в чем состоит фундаментальная сущность нашей природы. Человек должен открывать новое!” “Да! — подумал я. — Это про меня”. И сегодня так можно сказать обо всех людях.