Нейрохирурги выполняли такую операцию даже у младенцев в возрасте трех месяцев. И что самое удивительное, память и личность у них развивались нормально. Как показало недавно проведенное исследование, у 86 % из 111 детей, которым была проведена гемисферэктомия в университете Джонса Хопкинса в период с 1975 по 2001 г., эпилептические припадки либо полностью отсутствуют, либо не выражены и не требуют приема лекарственных препаратов. Те пациенты, которые продолжают страдать от приступов, как правило, имеют врожденные пороки или патологии развития, когда повреждение затрагивает области обоих полушарий, как объясняет Фриман.

Другое исследование показало, что у детей, перенесших гемисферэктомию, даже улучшалась успеваемость в школе после исчезновения эпилептических припадков. «Одна наша пациентка стала чемпионом класса в боулинге, другой пациент — чемпионом штата по шахматам, остальные успешно учатся в колледжах», — говорит Фриман.

Разумеется, что у такой операции есть и негативные последствия. «Вы можете ходить, бегать, некоторые даже танцуют, но вы теряете способность пользоваться рукой на противоположной к удаленному полушарию стороне тела. Вы практически полностью утрачиваете возможность владеть рукой, и зрение также пропадает на этой стороне», — говорит Фриман.

Стоит отметить, что после операции наблюдаются и другие нарушения. Если удалено левое полушарие, то «большинство людей испытывают трудности с речью. Раньше считали, что если удаление левого полушария происходит в возрасте старше двух лет, то человек не овладеет речью. Мы это опровергли», — говорит Фриман. «Чем младше пациент на момент проведения гемисферэктомии, тем меньшие нарушения будут наблюдаться в дальнейшем. Куда в правом полушарии перемещается речевой центр и какие функции он замещает, никто не знает».

Недавно Матерн с коллегами впервые исследовали с помощью функциональной магнитно-резонансной томографии, как меняется мозг в процессе реабилитации пациентов после гемисферэктомии. Изучение того, как оставшееся полушарие берет на себя речевую, сенсорную, двигательную и другие функции, «может пролить свет на пластичность мозга, на его способность изменяться», — отмечает Фриман. И все равно, потеря половины мозга, а значит, и способность владеть только одной рукой, и потеря одной половины поля зрения — состояние, которого любой хотел бы избежать всеми силами.

...
Исходно опубликовано на сайте Scientific American 24 мая 2007

Какую роль играют коннектомы в нашем сознании?

Отвечает Александр Форнито, доцент из института когнитивных и клинических нейронаук Монаша в Мельбурне, Австралия:

Человеческий мозг — уникальная и очень сложная сеть, состоящая из более 86 млрд нейронов, которые связаны между собой при помощи 100 млрд синапсов. Коннектом — это обширная карта таких связей, т. е. «схема проводки» мозга.

Современный уровень технологий не позволяет нам составить карту нейронных связей мозга, которая включала бы абсолютно все нейроны и синапсы. Вместо этого, используя, например, магнитно-резонансный томограф, ученые могут картировать связи между областями мозга размером в несколько миллиметров, которые состоят из тысяч нейронов.

На таком макроскопическом уровне каждая область мозга содержит специализированные нейроны, вместе обеспечивающие отдельные функции, которые в свою очередь вносят вклад в когнитивную деятельность человека. Так, разные области зрительной коры содержат нейроны, обрабатывающие определенный вид зрительной информации, например ориентацию линии или направление ее движения. Одни области мозга участвуют в обработке информации (звук, запах, прикосновение) от остальных органов чувств, в то время как другие контролируют движение, отвечают за эмоциональные реакции и т. д.

Все эти функции не существуют в изоляции, а интегрированы друг в друга для обеспечения единого и ясного восприятия мира. Считается, что такое слияние функций происходит при синхронизации активности разных популяций нейронов. Пучки нервных волокон, соединяющих разные области мозга, как провода в коннектоме, служат основой для синхронизации активности нейронов. Благодаря такому построению связей активность мозга больше похожа на слаженную симфонию, а не на непонятную какофонию.

Если нейронные связи нужны для координации нейронной активности, можно ли предположить, что у людей с различающейся структурой нейронных связей будут и разные когнитивные способности? Некоторые исследования показали, что люди с хорошо развитыми связями между областями мозга, интегрирующими информацию, лучше выполняют тесты на общий интеллект. При этом пациенты с различными расстройствами, например шизофренией, имеют менее развитую структуру нейронных сетей. Повреждение области мозга, тесно связанной со многими другими областями, приводит к особенно выраженным когнитивным нарушениям. Эти данные указывают на то, что нейронные связи в мозге вносят значительный вклад в обеспечение когнитивной деятельности.

Однако структура мозга не полностью определяет его функции. Если бы это предположение было верным, наш мозг был бы вовлечен в бесконечную циклическую активность, без какой-либо способности к обучению или приспособлению к новым условиям. Вместо этого коннектомы создают основу для модуляции и координации активности разных популяций нейронов, обеспечивая тем самым временные и многообразные объединения для слаженной работы.

Такие функциональные связи возникают и исчезают, как водовороты в течении реки, способствуя формированию новых связей или исчезновению неиспользуемых. В итоге структура связей мозга и его функции вместе образуют некий симбиоз, когда когнитивная деятельность зависит как от точности образования связей в коннектоме, так и от динамических паттернов нейронной активности в этих сетях.

...
Исходно опубликовано в Scientific American MIND 28 (1); 72–73 (январь/февраль 2017)

Почему мы ощущаем «обморожение мозга», когда едим холодное?

Отвечает Марк А. В. Эндрюс, профессор физиологии, колледж остеопатической медицины, Лейк-Эри:

Эта довольно часто испытываемая боль, известная также как головная боль из-за мороженого, возникает при быстром употреблении очень холодных продуктов и напитков. Если по-научному, то невралгия крылонебного узла (не очень простое название, согласны?) является результатом быстрого охлаждения и последующего нагревания кровеносных сосудов, расположенных в небе, верхней поверхности ротовой полости. Такой же, но безболезненный ответ возникает в сосудах лица, вызывая покраснение щек после прогулки в холодную погоду. В обоих случаях под действием холода кровеносные сосуды сужаются и следом происходит усиленная обратная реакция (их расширение) при нагревании тканей.

В небе кровеносные сосуды расположены вблизи большого числа болевых рецепторов, которые и реагируют на расширение сосудов, и посылают сигнал в мозг по тройничному нерву, одному из самых крупных нервов лицевой области. Этот нерв также передает болевой сигнал от лица. В процессе обработки сигналов мозг воспринимает боль как идущую от лобной области (похоже на феномен иррадиирущей боли при сердечных приступах). Ощущение «обморожения мозга» длится от нескольких секунд до нескольких минут, что несравнимо короче длительности его «родственника» — мигрени. Исследования показывают, что такие же сосудистые механизмы и иннервация, участвующие в возникновении ощущения «обморожения мозга», вызывают ауру (сенсорное нарушение) и пульсирующую головную боль при мигрени. Удивительно, но невозможно испытать головную боль от мороженого в холодную погоду. Только в теплое время года быстрое поедание мороженого вызовет это болевое ощущение.

К счастью, нет необходимости отказывать себе в удовольствии полакомиться мороженым. Чтобы избежать болевых ощущений, достаточно лишь плотно прижать язык к небу, не спешить с холодным продуктом или просто немного нагреть холодную пищу в преддверие рта перед тем, как проглотить.

...
Исходно опубликовано в Scientific American MIND 19 (1); 84 (февраль/март 2008)