Теплота

Все началось с цареубийства. 16 января 1793 года Национальный конвент в Париже проголосовал за смертную казнь короля Людовика XVI. Вероятно, глубокий корень науки — это мятеж: не признавать сложившийся порядок [Французская революция — один из моментов величайшего взлета научной мысли. Именно тогда были заложены основы химии, биологии, аналитической механики и многих других наук. Социальная революция разворачивалась рука об руку с научной. Первый революционный мэр Парижа был астрономом, Лазар Карно — математиком, Марат считал себя прежде всего физиком. Лавуазье активно участвовал в политической жизни, Лагранжа привлекали к участию в различных правительствах, сменявших друг друга в тот бурный и блистательный период человеческой истории. См.: Jones S. Revolutionary Science: Transformation and Turmoil in the Age of the Guillotine. New York: Pegasus, 2017.]. Среди тех, кто объявлял об итогах рокового голосования, был Лазар Карно, друг Робеспьера. Лазар восхищался великим персидским поэтом Саади Ширази, тем самым поэтом, которого в Акко захватили в плен крестоносцы и продали в рабство, тем самым, чьи великолепные стихи украшают здание ООН:


Одно сынов Адама естество,
Ведь все они от корня одного.


Постигнет одного в делах расстройство,
Всех остальных охватит беспокойство.


Тебе, не сострадающий другим,
Мы имя человека не дадим [Рус. пер. А. Старостина. Цит. по: Муширфаддин Саади. Гулистан (Розовый сад) / Под ред.: А. Бертельс, С. Шервинский; подготовка текста, вступ. статья, примеч.: Р. Алиев. М.: Гослитиздат, 1957. С. 60. — Прим. перев.].

Вероятно, другой глубокий корень науки — поэзия: видеть за пределами видимого. В честь Саади Карно дал своему первому сыну имя Сади. Так он и появился, из мятежа и из поэзии, — Сади Карно.

Юноша страстно увлекался паровыми машинами, которые как раз в начале XIX века начинали менять мир, приводя вещи в движение силой огня.

В 1824 году он написал небольшой трактат с заманчивым названием “Размышления о движущей силе огня” [См. рус. пер.: Карно Н. Л. С. Размышления о движущей силе огня и о машинах, способных развивать эту силу / Под ред.: С. Э. Фриш, В. Р. Бурсиан; примеч.: В. Р. Бурсиан, Ю. А. Крутков. М.; Пг.: Госиздат, 1923. — Прим. перев.], посвященный поискам теоретических принципов работы таких машин. Этот трактат полон ошибочных идей: в нем тепло представляется какой-то конкретной вещью, своего рода жидкостью, которая производит энергию, когда “падает” от нагретого тела к холодному, подобно тому как вода, переливаясь через запруду, производит энергию при падении с высоты вниз. Но ключевая идея была верна: паровая машина в конечном счете работает именно потому, что тепло от нагретого тела переходит к ненагретому.

Трактат в итоге попал в руки строгого прусского профессора с вдохновенным взором — Рудольфа Клаузиуса. Он ухватил суть и дал первую формулировку закона, которому предстояло стать знаменитым: если ничто вокруг не изменяется, то тепло не может передаваться от холодного тела к горячему.

Принципиальное различие с падающими предметами: мяч может упасть, а потом вернуться на место, например, отскочив. А тепло — нет. Провозглашенный Клаузиусом закон — единственный общий закон в физике, который отличает прошлое от будущего.



Никакой другой закон этого не делает: ни законы механического мира Ньютона, ни уравнения электрических и магнитных сил Максвелла, ни релятивистские уравнения гравитационного поля Эйнштейна, ни уравнения квантовой механики Гейзенберга, Шрёдингера и Дирака, ни уравнения квантовой теории поля XX века… Среди всех этих уравнений нет ни одного такого, чтобы прошлое и будущее различались [Можно поменять знак магнитного поля в уравнениях Максвелла или заряд и четность элементарных частиц. То есть для частиц справедлива CPT-инвариантность (зарядовое сопряжение, четность и обращение времени).]. Если какая-то последовательность событий допускается этими уравнениями, то ими же допускается и та же самая последовательность, но проигранная в обратном порядке во времени [Уравнения ньютоновской динамики говорят нам, как ускоряются тела, а ускорение не изменяется при просмотре фильма в обратном направлении. Ускорение камня, брошенного вверх, в точности такое же, как ускорение камня, падающего вниз. Если представить себе многие годы, проигранные назад, то Луна будет двигаться вокруг Земли в противоположном направлении, однако видимая сила их взаимного притяжения останется той же.]. В элементарных уравнениях этого мира [Этот вывод сохраняется и при введении в рассмотрение квантовой гравитации. О попытках понять, откуда берется направление времени, можно узнать, например, из книги: Zeh H. D. Die Physik der Zeitrichtung. Berlin: Springer, 1984.] стрела времени появляется только тогда, когда есть тепло [Строго говоря, стрела времени появляется и для тех явлений, когда нет прямой связи с теплом, но есть некоторые принципиальные аспекты, связывающие их с теплотой. Например, при использовании запаздывающих потенциалов в электродинамике. Все последующее, в особенности сделанные выводы, относится также и к ним. Но я предпочитаю не утяжелять повествования дроблением на специальные случаи.]. Связь тепла и времени исключительно крепкая: каждый раз, когда проявляется различие прошлого и будущего, происходит это благодаря теплу. Во всех последовательностях явлений, оказывающихся абсурдными при проигрывании наоборот, что-то да нагревается.

Если в фильме мы видим катящийся мяч, то мы не можем сказать, в правильном направлении прокручивается пленка или в обратном. Но если в фильме мяч замедляется и останавливается, то мы сразу видим, что направление проигрывания верно, потому что при обратном проигрывании мы увидели бы нечто неправдоподобное: как мяч сам по себе начинает двигаться. Замедление и остановка мяча — следствие трения, в результате которого выделяется тепло. Только выделившееся тепло и позволяет нам сказать, где тут прошлое, а где настоящее. И мысли у нас в голове разворачиваются от прошлого к будущему, а не наоборот, потому что в действительности от них в голове выделяется тепло…

Клаузиус ввел новую физическую величину для измерения этого необратимого движения тепла только в одном направлении и, будучи по-немецки солидно образованным, дал ей имя, заимствованное из греческого, — энтропия:

...

Я предпочитаю выбирать для названий важнейших научных понятий слова из древних языков, чтобы они одинаково звучали во всех живых языках. Предлагаю, таким образом, называть величину S энтропией тела, образуя это слово от греческого ἡτροpή, “преобразование” [Clausius R. Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie // Annalen der Physik, 125, 1865, ss. 353–400. Здесь цитируется с. 390.].

Страница из статьи Клаузиуса, где появляются и понятие, и обозначающее его слово “энтропия”. Уравнение дает математическую формулировку для изменения энтропии тела SS0 как суммы (интеграла) порций тепла, отданных телом при температуре T.


Энтропия по Клаузиусу — это измеримая и вычислимая [А именно как количество теплоты, отдаваемой телом, деленное на температуру. Когда нагретое тело отдает часть своего тепла холодному, то полная энтропия растет, поскольку из-за разницы температур покидающая нагретое тело энтропия меньше, чем передаваемая холодному. Когда температура всех тел выравнивается, энтропия достигает своего максимума: мы достигаем равновесия.] физическая величина, обозначаемая буквой S. Она может расти или оставаться постоянной, но никогда не уменьшается, если только процесс протекает изолированно. Чтобы обозначить, что она никогда не уменьшается, пишут:

...

ΔS ≥ 0

Формула читается так: “Дельта S всегда больше либо равна нулю”. Это неравенство называют вторым началом термодинамики (первое начало — это сохранение энергии). Его содержание сводится к тому, что тепло само по себе может перетекать только от горячего тела к холодному, и никогда не наоборот.

Простите мне эту формулу. Она единственная в книге. Это формула стрелы времени, я не мог обойтись без нее в своей книге о времени.

Это единственная формула фундаментальной физики, в которой заложено различие прошлого и будущего. Единственная, говорящая нам о течении времени. В этой необычной формуле скрыт весь мир.

Обнаружит это один симпатичный и неудачливый австрияк, племянник часовых дел мастера, романтик с трагической судьбой Людвиг Больцман.

Расфокусировка

Именно Людвиг Больцман первым начал понимать, что скрывается в формуле ΔS ≥ 0, подтолкнув нас к одному из самых головокружительных полетов навстречу более ясному пониманию таинственной грамматики мира.

Людвиг работал в Граце, Гейдельберге, Берлине, Вене и снова в Граце. Он сам говорил о себе, что такая непоседливость у него оттого, что он родился во вторник начала карнавала. Это шутка наполовину: непоседливость в его характере дополнялась переменчивостью. Обладая нежным сердцем, Больцман то переживал воодушевление, то впадал в депрессию. Он был невысок ростом, полного телосложения, темные волосы свивались в кудри, борода была вечно всклокочена. Дочь говорила про него: “Мой милый добрый толстяк”. Это он, Людвиг, сам стал жертвой течения времени.

Сади Карно думал, что тепло — это какая-то субстанция, жидкость. Он ошибался. Тепло — это микроскопические возбуждения молекул. Горячий чай — это чай, в котором молекулы сильно возбуждены. А холодный чай — это чай, в котором молекулы не очень возбуждены. В кубике льда, который еще холоднее, молекулы движутся еще спокойнее.



В конце XIX века многие все еще думали, что молекул и атомов на самом деле не существует; но Людвиг был убежден в их реальности и не уставал бороться за это убеждение. Его желчная критика в адрес тех, кто не верил в атомы, навсегда останется в истории. “Молодежь, как я, всегда стояла на его стороне”, — вспоминал один из “молодых львов” квантовой механики [Арнольд Зоммерфельд.]. Во время жаркой полемики на одной из конференций в Вене один известный физик [Фридрих Вильгельм Оствальд.] выступил против Больцмана, утверждая, что научный материализм мертв, так как законам материи неизвестно о направлении времени. Физикам тоже случается говорить чушь.

Глаза Коперника распознавали вращение Земли, когда он видел закат солнца. Глаза Больцмана различали беспрестанно движущиеся атомы, когда он смотрел на стакан с недвижимой водой.

Мы видим стакан с водой, как астронавты на Луне видят Землю: ничего, кроме спокойного голубого сияния. Ни неудержимого буйства жизни на Земле, ни растений и животных, ни любовных страстей и отчаяния не видно с Луны — только украшенная крапинками мраморная синева. За стеклянными стенками стакана то же непрекращающееся буйство мириадов молекул — их гораздо больше, чем живых существ на Земле.

Из-за этой суеты все смешивается. Если какая-то часть молекул останавливается, суета прочих не позволяет им успокоиться надолго, вовлекая в новое движение: буйство ударами и толчками передается от одних молекул другим. Из-за этого холодные предметы, оказавшись в контакте с нагретыми, разогреваются: их молекулы более интенсивно подвергаются толчкам со стороны молекул разогретого тела, и это их возбуждает — то есть температура тела повышается.

Термическое возбуждение сродни перетасовыванию колоды карт: если карты сначала были расположены по порядку, то перетасовывание этот порядок нарушит. Так тепло передается от нагретого тела к холодному — через перемешивание и через естественное нарушение всякого порядка.

Это-то и понял Людвиг Больцман. Разница между прошлым и будущим не в элементарных законах движения, не в глубинной грамматике природы. Она в естественном нарушении порядка, которое приводит всякую конкретную ситуацию к менее специфической, меньше отличающейся от других подобных.

В этом его блестящая интуиция! Совершенно правильная! Но проясняет ли она происхождение разницы между прошлым и будущим? Нет. Она предполагает только вопрос. Вопрос сейчас таков: почему в одном из двух направлений времени — а именно в том, которое мы называем прошлым, — все оказывается более упорядоченным? Почему вселенская колода карт в прошлом была упорядоченной? Почему в прошлом энтропия была ниже?