Если удастся доказать эмпирическое существование монополей, будут разработаны механизмы их генерации и управления, и человечество получит колоссальный источник энергии, но в тоже время и оружие, как это произошло с атомной энергией (только несоизмеримый по мощности). Защита и управление такими процессами, как подсказывает физика, заключается в том, что необходимо создать экран из антимонополей, который приведёт к аннигиляции и прекратит уничтожение вещества. Наука несёт не только блага, но и опасности. Остаётся надеяться, что развитие научного познания сможет справиться с возникающими угрозами.

Тёмная материя — скрытая субстанция Вселенной

Наука XX века установила состав звёзд, выяснила их эволюцию, благодаря мощным телескопам был открыт огромный мир галактик, который насчитывает 100 млрд таких объектов. Установлено расширение Вселенной, смоделирована её эволюция. Казалось, это и есть мир, где существует человеческая цивилизация. И вдруг выяснилось, что барионная материя, из которой состоит видимая Вселенная, составляет всего 4,9 % от общей массы материи. При этом 26,8 % приходится на тёмную материю, не участвующую в электромагнитном взаимодействии и обнаруживающую себя через гравитацию, а 68,3 % составляет тёмная энергия, ответственная за расширение Вселенной. Таким образом, оказалось, что наш мир состоит на 95,1 % из тёмной материи и тёмной энергии.

Представим, что мы живём на острове и считаем его всей реальностью, окружающей нас. Неожиданно, выйдя на берег, мы обнаружили огромный океан, находящийся рядом с нами, о существовании которого никто и не подозревал. Отчасти такая же мировоззренческая революция произошла в науке, столкнувшейся на рубеже XXI века с новой формой материи, перевернувшей физические традиционные представления.

Следует отметить, что ещё в 30-х годах прошлого века, наблюдая за галактическими скоплениями, астрономы пришли к выводу о существовании некой силы, связывающей галактики в единое целое и, не давая им разлететься. Так возникла проблема «скрытой массы». В 1970-х годах при изучении вращения галактик были обнаружены те же самые явления. Вскоре возникло понимание того, что тёмная материя состоит не из обычного вещества и излучения. Скорее всего, 90 % вещества собирается вместе из-за наличия некоего экзотического материала, оставшегося после Большого взрыва, положившего начало развитию Вселенной.

В течение долгого времени кандидатом на роль тёмной материи выдвигалась гипотетическая частица, обладающая большой массой и слабо взаимодействующая с веществом, получившая название WIMP (Weakly Interacting Massive Particle). Примечательно, что она вписывалась в теорию суперсимметрии, являющейся популярной среди теоретиков. Тем не менее чувствительные наземные детекторы, несмотря на десятилетия наблюдений, не обнаружили никаких признаков существования этих частиц.

Другим кандидатом является аксион, теоретический объект, возникающий в теории суперструн. Эта частица имела бы очень малую массу и в изобилии находилась бы в пространстве. Десятки или даже сотни триллионов аксионов могли присутствовать в одном кубическом сантиметре [44]. Единственное их воздействие на остальную материю осуществлялось бы через гравитацию. Накопленная масса аксионов могла влиять на орбиты звёзд и галактик в галактических скоплениях. В 1980-х годах возникло мнение, что Большой взрыв мог породить достаточное количество аксионов, чтобы объяснить наличие тёмной материи. Между тем теория ничего не говорит, какова вероятность их взаимодействия с веществом, насколько они инертны. Скорее всего, их масса должна быть крайне мала, поскольку в экспериментах на коллайдерах они обнаружены не были. В 1987 году вспышка сверхновой в Большом Магеллановом облаке показала, что если бы масса аксиона составляла одну миллиардную часть электрона, то в этом случае должны были возникнуть искажения нейтринного потока, пришедшего к Земле. Однако такие явления обнаружены не были. Не исключено, что аксионы имеют ещё меньшую массу, чем предполагали теоретики.

Учёные выдвинули несколько претендентов на роль тёмной материи. Они считают, что это нечто совсем иное, чем известные частицы, она слабо взаимодействует с веществом и если вообще взаимодействует, то только лишь через гравитацию. Различают горячую и холодную тёмную материю. Наблюдения показывают, что основная часть объектов, её составляющих, имеет скорость гораздо меньше скорости света. Напротив, горячая тёмная материя обладает субсветовыми скоростями. Аксионы относятся к холодной тёмной материи, и учёные не оставляют попыток обнаружить их экспериментально или в наблюдениях за дальним космосом.

Ещё одним кандидатом являются необычные нейтрино, выходящие за рамки трёх известных разновидностей, которые бы ещё меньше взаимодействовали с веществом [45]. Определённую лепту могли бы внести и микрочёрные дыры, возникшие на ранних этапах формирования Вселенной. Между тем до сих пор обнаружить их не удалось и высказывается мнение, что они уже исчезли за время существования Вселенной. Теоретики выдвигают множество предположений о природе тёмной материи. Среди них встречаются довольно экзотические. К таковым относятся топологические дефекты пространства и материя из параллельных вселенных. Так, тёмная материя может явиться дефектами пространства, возникшими в момент Большого взрыва, содержащими в себе энергию и вызывающими гравитацию. Эта гипотеза может быть проверена экспериментально с помощью орбитальных космических зондов, находящихся на орбите Земли и в пределах Солнечной системы, снабжённых высокоточными атомными часами, потому что при прохождении топологического пространственного дефекта возможно рассогласование хода времени.

С точки зрения гипотезы параллельных Вселенных, гравитация рассматривается как уникальный вид взаимодействия, через который осуществляется связь между мирами. Из этого вытекает, что эффекты тёмной материи могут быть объяснены взаимодействием барионного вещества нашей Вселенной через гравитацию с массивной материей из других измерений. Материя в других измерениях, а, по сути, в параллельных вселенных, вероятно, формирует похожие структуры, как и в нашем мире, а может, создаёт иные формы другим необычным способом, которые проявляются в нашей Вселенной в виде гравитационных галло вокруг галактик и других эффектах, ещё не открытых современной наукой.

Исследование открытых новых реальностей в виде тёмной материи и тёмной энергии не является теоретической игрушкой для мозга астрофизиков. Это может привести и обязательно приведёт к кардинальному изменению нашего знания об окружающем мире, и будет способствовать возникновению принципиально новой техники и новых технологий.

Эволюция звёзд типа Солнца

Ночное небо сияет огромным количеством звёзд. Только в звёздном острове нашей Галактики Млечный Путь их насчитывается не менее 100 млрд [46]. А во Вселенной около 100 млрд Галактик. Так что звёзды — один из самых распространённых космических объектов. Звёздообразование продолжается и поныне, спустя 13,7 млрд лет после Большого взрыва. Как же рождаются звёзды, каковы источники их энергии, и чем заканчивается эволюция таких звёзд, как Солнце?

Звёзды образуются под действием гравитации из газопылевых облаков, расположенных в дисках спиральных галактик. Они представляют собой гигантские газовые молекулярные комплексы. Эти структуры, преимущественно состоящие из молекулярного водорода, достигают впечатляющих масштабов, простираясь на расстояния порядка 300 световых лет. В них находятся компактные зоны, имеющие размер в несколько световых месяцев, плотность 30 000 атомов водорода на 1 кубический сантиметр и температуру 10 градусов Кельвина. Процесс гравитационного сжатия таких зон, приводящих к звёздообразованию, до сих пор изучен недостаточно. В настоящее время для этого используется компьютерное моделирование. Одна из неординарных гипотез заключается в том, что процессы фрагментации и аккреции (приращение массы под действием сил тяготения) запускаются гигантскими чёрными дырами, находящимися в центрах галактик.

С точки зрения физики, звезда — это плазменный шар, в котором протекают термоядерные процессы. По сути это термоядерный реактор, представляющий собой постоянно взрывающуюся водородную бомбу, где сила взрыва уравновешивается силами тяготения [47]. В результате возникает устойчивое состояние, в ходе которого выделяется энергия. На Солнце каждую секунду 564 млн тонн водорода превращаются в 560 млн тонн гелия, а дефект массы в виде 4 млн тонн выделяется в виде излучения в окружающее пространство. Механизм выработки энергии у звезды зависит от температуры. Именно температура позволяет преодолевать кулоновские силы отталкивания между атомами водорода, чтобы началась термоядерная реакция синтеза. Генерация энергии в звёздах происходит за счёт так называемого протон-протонного цикла, как только в ядре звезды температура достигнет 10 млн градусов Кельвина. На первом этапе два атома водорода соединяются и образуют дейтерий. Дейтерий, присоединяя третий протон, порождает тритий, или как его ещё называют — гелий-3, лёгкий изотоп гелия. При взаимодействии двух атомов трития образуется атом обычного гелия, а два протона возвращаются в реакцию. В результате разности масс взаимодействующих частиц выделяется энергия.