Необходимо отметить, что допустимы сложные комбинации представленных сценариев. Особый вариант возникновения хаоса осуществляется через явление резонанса, для которого характерно совпадение частот взаимодействующих процессов. Параметрический резонанс, как правило, приводит к резкому усилению колебаний, и при определённых условиях возможна их трансформация в хаотические и непредсказуемые состояния. Можно привести пример флаттера, резонансного воздействия в авиастроении, когда авиация вышла на субзвуковые скорости, а также разрушение ракетоносителя Королевской техники в результате резонанса колебаний работающих двигателей.

Возникшая в конце XX века теория катастроф, смогла объяснить и рассчитать скачкообразные переходы или метаморфозы как в природе, так и в любых сферах бытия, связанных с потерей устойчивости и упорядоченности. Действительно, внезапно закипает вода, вспыхивают бунты в тюрьмах, разрушается кристаллическая решетка вещества, а лишняя соломинка ломает спину верблюда. Причём никаким резким воздействиям эти объекты не подвергались. Их состояния плавно менялись, как и в предшествующие моменты времени, и ничто не предвещало катастрофу — резкое изменение в структуре или поведении системы. Основоположники теории катастроф Том, Зиман и Уитни выделили семь типов топологических конструктов или фазовых портретов, попадая в которые и пересекая бифуркационные зоны, система теряет устойчивость и разрушается. В результате возникает неупорядоченность вплоть до хаоса [28].

Возможен и обратный процесс, и это получило название бимодальности, где всё зависит от истории изменения. Установлено, что если количество воздействующих параметров не превышает пять, а переменных изменений два, то существует семь типов бифуркационных множеств, вычислив которые, и имея мониторинг движения, можно управлять состоянием системы, не допуская катастрофических явлений. Математика универсальна, и в настоящее время методы теории катастроф применяются уже практически во всех сферах реальности от физики твёрдого тела до психологии, экономики и политтехнологий.

Что первично хаос или порядок? Миры, где есть только что-то одно

Если рассматривать нашу Вселенную, то можно констатировать, что в этом мире преобладает случайность. Действительно, распределение звёзд в галактиках, расположение самих галактик, пылевых облаков, строение нейронной сети головного мозга, в чём-то напоминающее галактические распределения, всё это согласуется со вторым законом термодинамики, который утверждает возрастание энтропии как меры беспорядка, становящейся максимальной при равновероятностных состояниях. Хаос доминирует в нашем мире.

Тем не менее во Вселенной существуют и обратные процессы, стремящиеся к упорядоченности и усложнению. В звёздах протекают термоядерные реакции, в результате которых из простого элемента — водорода синтезируются все сложные атомы. Планеты вращаются вокруг звёзд, которые в свою очередь вращаются вокруг галактических ядер. К примеру, для нашего Солнца вместе с планетной системой такой цикл по разным оценкам составляет 220–240 млн лет и называется галактическим годом. Даже в химических реакциях присутствуют периодические и автоколебательные процессы, возникают явления самоорганизации. Наконец биологическая жизнь есть мощное антиэнтропийное явление, само возникновение которой с точки зрения современной науки имеет почти нулевую вероятность (единица, делённая на 201820). Но вопреки этому она существует и, согласно некоторым гипотезам, достаточно распространена во Вселенной [29].

В нашем мире присутствуют как случайность, беспорядочность, так и упорядоченность, и усложнение. Так что же первично, хаос или порядок? Для ответа на этот вопрос, необходимо выяснить в каком виде существует первичная реальность, и от какого критерия зависит наличие в ней либо хаоса, либо порядка.

Развитие топологии (науки о пространстве) позволило установить глобальный параметр, определяющий характер этих процессов в действительности — размерность пространства. Пространство может иметь любую размерность вплоть до N. И это ни метафора, и ни выверт математической мысли. Так, пространство нашей Вселенной имеет девять измерений, шесть из которых свёрнуты и образуют сложный топологический конструкт [30]. Они обнаруживают себя на планковском уровне масштаба, составляющим 10-35 м, в то время как трёхмерное пространство в момент Большого взрыва претерпело инфляцию (раздувание) и продолжает расширяться, это макро- и мегамир, в котором мы живём. Топологией установлено, что если размерность пространства меньше 3, например, 2 (плоскость) или 1 (линия), то в этих мирах хаос невозможен и случайностей не существует. Тогда как в пространстве размерности 3 присутствует и хаос, и порядок. Но, если пространство во Вселенной имеет больше трёх размерностей, например, 4, 5…N, то в этих Вселенных царит хаос, а периодика невозможна, впрочем, как и усложнение. Даже атомы здесь отсутствуют, это миры элементарных частиц и случайностей.

Идеи голографической и Мультивселенной, в частности: работы Бома, Малдасены, Хоофта предполагают, что наш мир является проекцией голографической двухмерной параллельной Вселенной, где существуют только квазипериодические процессы, а случайностей и хаоса не существует. Они возникают в результате трансляции этой голографической основы в нашу девятимерную Вселенную. Следовательно, первичная реальность носит квазипериодический характер и существует в виде голографической целостности.

Таким образом, порядок первичен, поэтому и реализуются антиэнтропийные процессы, базирующиеся на первичной основе параллельной реальности. И, несмотря на глобальную тенденцию энтропийной направленности, в нашей Вселенной присутствует локальная негэнтропийная реализация. Открытие условий, законов и механизмов этих процессов может реализовать фантастический вариант входа в первичную реальность, позволит научиться управлять её основой, что может изменить мир нашей Вселенной и нас самих.

Поразительно, но, по оценкам космологов, количество параллельных Вселенных может составлять огромное число — 10500. Однако, вероятно, только некоторые из них, могут оказывать на нас существенное влияние, а в настоящее время речь идёт о воздействии лишь одной — голографической Вселенной.

Жизнь как неслучайное явление. Информационный подход

Энтропийные явления царствуют в нашем мире. Информация в термодинамике определяется как обратная энтропия, т. е. выступает как мера упорядоченности. Если взглянуть на нашу земную форму жизни с точки зрения этого подхода, поражает огромная информационная ёмкость живой системы. Ведь даже самый простой микроорганизм на Земле имеет почти нулевую вероятность возникновения (1:201820). Каким образом в нашей Вселенной могла возникнуть и существовать такая сложнейшая система?

Возможно, решение этого вопроса заключается в единообразной трактовке самого понятия информации. Между тем общей теории информации не существует, это дело ближайшего будущего, на данный момент имеется несколько принципиально разных концепций, трактующих данный феномен. Наибольшее распространение получил вероятностный подход, сформулированный Хартли и Шенноном. С их точки зрения информация выступает как мера уменьшения неопределённости в наступлении статистических событий. Подход Шеннона является более широким по сравнению с Хартли, так как включает разновероятностные события. Он может быть использован для выяснения разницы мер структур, имеющих вероятностные характеристики, и определения меры детерминированности, следовательно, апостериорной (полученной в результате опыта) информации. В качестве эталона выступает полный беспорядок, для которого характерна предельно высокая степень энтропии.

Существуют также трактовки информации как разности мер структур, но не имеющих вероятностную природу, а задаваемых в различных алгебрах [31].

В рамках шенноновского понимания информации Винером была заложена основа кибернетического подхода, наиболее близкая к пониманию функционирования живой материи. Им было сформулировано два важных положения: первое, информация не существует без своего носителя, по отношению к которому она инвариантна, и второе, она представлена в сигнальной форме и имеет кодовый характер. Иными словами, информация есть выражение порядка организованных сигналов, являющихся отображением источника. Отсюда пришла идея генетического кода как основы биологических процессов. Был открыт универсальный носитель генетической информации — ДНК, а также РНК, которая содержится в некоторых вирусах. Именно эта концепция лежит в основе понимания сущности живого.

Имеется и другой подход, рассматривающий информацию как меру комплексности (сложности) объектов. В рамках идей конструктивной математики, согласно которой все объекты являются построенными (сконструированными), возникла алгоритмическая концепция, сформулированная отечественным учёным А.Н. Колмогоровым. В ней информация определяется как минимальная длина компьютерной программы, с помощью которой этот объект был построен. Например, если мы возьмём числовой ряд 1.2.3.4.5…N, то для построения любого члена ряда нам понадобится всего один оператор, так как следующий член ряда возникает после прибавления к предыдущему единицы. Иначе говоря, есть одна формула, с помощью которой он строится и, следовательно, такой ряд как математический объект обладает малой информационной ёмкостью. А вот если взять набор случайных чисел, которые не имеют компактного алгоритма описания, то тогда, сколько имеется этих чисел, столько и потребуется операторов для их представления, и информационное содержание такого объекта будет громадно, а он сам сверхсложен.