Получив подсказку относительно значимости сотрудничества и рекурсивных отношений между биологическими видами, ученые стали обнаруживать и документировать жизненно важную роль сотрудничества вновь и вновь. Отец американской экологии Джордж Эвелин Хатчинсон метафорически представлял связь между естественной историей и естественным отбором фразой «экологический театр и эволюционная пьеса», ставшей названием его монографии 1965 г. [Hutchinson, Ecological Theater.]. То есть сюжет и разворачивание пьесы или драмы зависят от состава театра, и, в свою очередь, сама пьеса может влиять на свою постановку. Совсем недавно британский биолог Ричард Докинз привел эволюцию к ее наименьшему общему знаменателю, представив в качестве субстрата для операций естественного отбора отдельных особей, выступающих как машины выживания для «эгоистичных генов». Эти эгоистичные гены являются для Докинза подлинными актерами эволюции, а все остальное — это просто их носители, ресурсы или препятствия для их действий. Но сотрудничество и групповые выгоды, тем не менее, согласуются с таким геноцентрическим взглядом на жизнь.

Помимо этого, эволюционная пьеса Дарвина изначально представляла естественный отбор как медленный, долгий процесс, что, безусловно, верно. Но в последнее время было показано, что естественный отбор способен также и к быстрым изменениям, таким, как формирование заметных морфологических и иных адаптивных признаков, отвечающих новым или флуктуирующим задачам. Эти явления очевидны в нашей повседневной жизни — например, развитие устойчивости патогенов к антибиотикам, развивающейся после их недолгого применения, что вынуждает нас, в свою очередь, пересматривать нашу антимикробную тактику. Но эта ускоренная версия эволюции не ограничена лишь быстро размножающимися микробами. Одна из первых демонстраций быстрого естественного отбора в дикой природе была проведена в Университете Брауна в 1898 г., недалеко от того места, где сейчас находится мой офис [Johnston, Niles, and Rohwer, “Hermon Bumpus and Natural Selection.”]. Хермон Кэри Бампус, молодой профессор Университета Брауна, заинтересовавшийся активно развивавшейся в то время математической статистикой, обнаружил в анатомической лаборатории Университета 136 беспомощных домашних воробьев, пойманных в ледяной шторм на холме Колледж-Хилл. Он забрал их и попытался восстановить их здоровье в своей лаборатории, но добился лишь частичного успеха, многие воробьи погибли. Когда Бампус измерил морфологические признаки выживших и погибших воробьев, он обнаружил одно из первых проявлений естественного отбора в этой области: проще говоря, выжившие воробьи были крупнее и сильнее погибших. Столетие спустя подобные случаи быстрого эволюционного развития оказались на переднем крае эволюционной биологии. Десятилетия кропотливых и упорных исследований зябликов Дарвина (известных также как галапагосские зяблики) биологами Принстонского университета Питером и Розмари Грант показали, что типы клювов этих птиц, от мощных, приспособленных к расклевыванию орехов, до тонких насекомоядного типа, наряду с пищевыми предпочтениями, могут быстро изменяться, адаптируясь к переменам в состоянии пищевых ресурсов [Johnston, Niles, and Rohwer, “Hermon Bumpus and Natural Selection.”]. Эволюция это не всегда медленный процесс, как мы полагали. Даже медленно размножающиеся позвоночные могут с высокой скоростью реагировать на быстрые изменения среды обитания, если имеют достаточный запас генетической изменчивости.

Изменения нашего понимании эволюции включали тенденцию 1960-х и 1970-х гг., характеризующуюся некритичными эволюционными интерпретациями развития группового поведения и индивидуальных поведенческих признаков. Прежде всех стоит отметить британского биолога Веро Винн-Эдвардса, известного своей поддержкой группового отбора на уровне вида. Он утверждал, что признаки эволюционируют на благо вида в целом, но эта идея не была подтверждена какими-либо данным или теорией [Wynne-Edwards, Animal Dispersion.]. Однако за последние пару десятилетий биологи-эволюционисты обнаружили, что объясняющая сила естественного отбора и эволюции может выходить за рамки моделей простого выживания наиболее приспособленных особей, ограниченных в пределах популяции одного биологического вида. Эту новую модель эволюции лучше рассматривать как модель, охватывающую интерактивные, кооперативные сети организмов, а не состоящую исключительно из эгоистичных и независимых организмов — как выживание наиболее приспособленных групп, а не просто выживание наиболее приспособленных индивидов [Wilson, Genesis; Christakis, Blueprint.]. Таким образом, модели симбиогенеза описывают, как виды развиваются вместе с другими видами и, соответственно, действуют на более высоких уровнях организации. Это меняет наш взгляд на естественный отбор, так как групповое поведение в локальном, региональном и даже глобальном масштабах может подвергаться отбору в случае, если повышает генетический успех. Эёрс Шатмэри и Джон Мейнард Смит утверждали, что даже основные переходы в эволюции жизни на Земле — от клеток к растениям, животным и вплоть до социальной организации — все они были вызваны не конкуренцией между машинами эгоистичных генов, а скорее сотрудничеством. Одна из целей этой книги заключается в том, чтобы упрочить эти интерпретации в предположении о том, что сотрудничество между группами может даже побить козыри конкуренции, одной из движущих сил эволюции.

В эволюционной теории имеется два способа оценки группового отбора: традиционный неоспоримый и обновленный более радикальный. В первом случае групповой отбор осуществляется тогда, когда индивид получает больше преимуществ, живя в группе или в сообществе, а не в одиночку. Другими словами, работающая на индивидуальном уровне эволюция ведет к жизни в группе. Это с готовностью принимается в мире, и мы можем видеть это, например, в случае брюхоногих моллюсков и морских желудей, обитающих под покровом водорослей. Второй же способ признает случаи, когда единицей естественного отбора становится группа, а не отдельный индивид. Такие группы часто связаны общим генетическим родством или родственным отбором, например пчелиные семьи и колонии сусликов. Этот второй вид группового отбора расширяет эволюционные возможности сотрудничества в экосистеме. Континуум между индивидуальным отбором и групповым отбором это то, что мы хотели бы понять в нашей истории эволюции, особенно потому, что групповой отбор мощнее объясняет компоненты эволюции человеческой культуры, в частности кооперативные технологии, такие как речь и торговля, в противовес конкурентным силам. Групповые блага могут дать наибольший выигрыш для отдельных людей и стать движущей силой человеческой истории и самой цивилизации. Расширенная естественная история это то, что описывает переход от ядросодержащих клеток и многоклеточных организмов к совместной охоте, торговле, социальной организации, революциям в цивилизации и экстремальному росту населения. Это история возрастающего сотрудничества, сделавшего нас такими, какие мы есть сегодня. Если мы позволим ей восторжествовать и помогать нам в принятии решений, это сможет изменить наше будущее.

Таким образом, жизнь на нашей планете требует и позитивных, и негативных взаимодействий биологических видов, коэволюции и симбиоза или мутуализма с органическим окружением. Вместо того, чтобы быть интересными побочными сюжетами, эти процессы, в совокупности называемые здесь симбиогенезом, создают, строят и поддерживают сцену для экологических взаимодействий в эволюционном театре, формирующем нашу историю. Симбиогенез генерирует закономерности в природе, начиная от взаимоотношений между ядрами, митохондриями и пластидами, контролирующими и снабжающими энергией клетки растений и животных, и поддерживающих движение энергии в экосистемах, до процессов производства кислорода, протекавших в течение сотен миллионов лет и сделавших нашу планету пригодной для жизни. Наши продукты питания и лекарства также получены почти исключительно методом проб и ошибок в ходе коэволюционных отношений с растениями и животными. Даже духовность и религия у людей могут корениться в наших симбиотических отношениях с растениями и грибами в наших экосистемах.

Наряду с симбиогенезом другой очень простой идеей о принципе структурирования всей жизни на нашей планете является представление об иерархической организации, описываемой как обязательный, последовательный порядок развития повторяющихся, предсказуемых закономерностей. Так, например, при счете до пяти один идет раньше двух, а пять — после четырех. Аналогично при строительстве дома фундамент закладывается перед строительством первого этажа, который, в свою очередь, строится прежде крыши. Строительство с крыши не начинается. Это примеры простой иерархической организации. Организмы являются неслучайными ассоциациями как продукты самоорганизации и иерархической сборки. Поэтому сообщества растений и животных на скалистых берегах, коралловые рифы, мангровые леса и градиенты лесов это не случайно образовавшиеся наборы, а скорее четко организованные (и из-за их организации кооперативные) системы, легко узнаваемые как натуралистами, так и их предками, охотниками-собирателями.

Даже такие сообщества, как тропические леса или группы насекомых, организованные, как представляется, не иерархически (или нейтрально) либо составившиеся случайным образом, демонстрируют высокий уровень самоорганизации, если рассматривать их в соответствующем пространственном или временном масштабе или перспективе. К примеру, песчаная дюна на береговой линии с низкой волновой энергией имеет заметную сегрегацию видов, тогда как песчаные дюны на береговой линии с высокой волновой энергией внешне не имеют пространственной организации — пока их не рассмотреть с самолета. Точно так же деревья в тропических лесах представляются распределенными случайным образом — до тех пор, пока они не будут рассмотрены с учетом географической широты или биогеографически. В таких широтных масштабах растения и животные и их сообщества могут иметь очень предсказуемые закономерности пространственной организации, как в экологическом, так и в эволюционном плане [Vermeij, Biogeography and Adaptation.]. Простая, элегантная самоорганизация, управляемая правилами притяжения, отталкивания, совместимости и несовместимости, является основным законом и общим знаменателем в физике. Следовательно, это важно и для физических и биологических процессов, генерирующих повторяющиеся закономерности в природе.