Если вам понравилась книга, вы можете купить ее электронную версию на litres.ru

Мэтью Кобб

Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли

В память о Кевине Коннолли (1937–2015), профессоре психологии Шеффилдского университета, который направил меня сюда

Поскольку мозг действительно является машиной, мы не должны надеяться обнаружить его хитрость устройства иными способами, кроме тех, что используются для обнаружения разгадки механизма других машин. Таким образом, остается сделать то, что мы сделали бы для любой другой машины: разобрать ее на части и посмотреть, что эти составляющие могут делать по отдельности и вместе.

Нильс Стенсен. «О мозге», 1669 год

Ключевые области человеческого мозга


Введение

В 1665 году датский анатом Нильс Стенсен обратился к небольшой группе мыслителей, собравшихся в Исси-ле-Мулино, на южной окраине Парижа. Фактически эта неофициальная встреча в дальнейшем положила начало Французской академии наук [Французская академия наук была учреждена в 1666 году Людовиком XIV. — Здесь и далее, если не указано иное, прим. ред.]; на данном собрании также был сформулирован современный подход к пониманию мозга. В своей лекции Стенсен смело утверждал, что если мы хотим понять, что делает мозг и как он это делает, а не просто описать его составляющие, то должны рассматривать мозг как машину и разобрать его на части, чтобы увидеть принципы данного органа.

Выдвинутая идея была революционной, и более 350 лет мы следуем предложению Стенсена: заглядываем в мертвый мозг, извлекаем кусочки из живого, регистрируем электрическую активность нервных клеток (нейронов) и — с недавнего времени — изменяем функцию нейронов с самыми удивительными последствиями. Хотя большинство нейробиологов никогда не слышало о Стенсене, его видение веками господствовало в науке о мозге и лежит в основе нашего замечательного прогресса в понимании, пожалуй, самого необычного органа.

...

Ученые могут заставить мышь думать, что она находится в другом месте.

Теперь мы можем заставить мышь думать, что она находится в другом месте, превратить плохую мышиную память в хорошую и даже использовать всплеск электричества, чтобы изменить то, как люди воспринимают лица. Мы составляем все более подробные и сложные функциональные карты мозга человека и других представителей животного царства. У некоторых видов мы можем трансформировать саму структуру мозга по своему желанию, изменяя в результате поведение животного. Некоторые из наиболее выдающихся последствий роста нейробиологической науки можно увидеть в способности парализованного человека управлять роботизированной рукой силой разума.

Ученые не всесильны: по крайней мере, на данный момент нельзя искусственно создать точный сенсорный опыт в человеческом мозге (галлюциногенные препараты делают это неконтролируемым образом), хотя, похоже, мы обладаем удивительной степенью контроля, необходимой для проведения такого эксперимента на мышах. Две группы исследователей недавно обучили грызунов лизать бутылку с водой, когда животные видели набор полос, а машины записывали, как небольшое количество клеток в зрительных центрах мозга реагирует на изображение. Затем ученые использовали сложную оптогенетическую [Оптогенетика — методика исследования работы нервных клеток, основанная на внедрении в их мембрану специальных каналов — опсинов, реагирующих на возбуждение светом.] технологию, чтобы искусственно воссоздать выявленный паттерн нейронной активности в соответствующих клетках мозга. Когда это произошло, животное отреагировало так, будто увидело полосы, хотя и находилось в полной темноте. Одно из объяснений состоит в том, что для мыши паттерн нейронной активности был тем же самым, что и при зрительном восприятии. Для решения данной проблемы необходимы более сложные эксперименты, но мы стоим на пороге понимания того, как паттерны активности в сетях нейронов создают восприятие.

...

На данный момент нельзя искусственно создать точный сенсорный опыт в человеческом мозге.

Эта книга рассказывает многовековую историю изучения головного мозга, демонстрируя, как блестящие умы, отдельные из которых теперь забыты, сначала определили, что мозг является органом, рождающим мысли, а затем начали показывать, что он может делать. На страницах книги описываются необыкновенные открытия, совершенные нами в поисках знания, на что способен мозг, и я восхищаюсь кропотливыми экспериментами, что привели к значимым научным прорывам.

Но в рассказе об удивительном прогрессе есть существенный изъян, который редко признается во многих работах, претендующих на объяснение того, как работает мозг. Несмотря на солидный фундамент накопленной информации, у нас нет четкого представления о том, как миллиарды, миллионы, тысячи или даже десятки нейронов работают вместе, вызвая активность мозга.

Мы знаем в общих чертах, что происходит: мозг взаимодействует с окружающим миром, с остальными частями нашего тела, обрабатывая стимулы с помощью как врожденных, так и приобретенных нейронных сетей. Мозг прогнозирует, как эти стимулы могут изменяться, чтобы быть готовым к ответу, и, будучи частью организма, стимулы влияют на общее функционирование тела. Все это достигается нейронами и их сложными взаимосвязями, включая множество химических сигналов, в которых они «купаются». Независимо от того, насколько научное описание может идти вразрез с вашими глубочайшими чувствами, нет никакого «бестелесного человека», обитающего у вас в голове и присматривающего за активностью мозга, — все это просто нейроны, их связь и химические вещества, которые наполняют нейронные сети.

Однако, когда дело доходит до реального понимания того, что происходит в мозге на уровне нейронных сетей и составляющих их клеток или до способности предсказать, что произойдет, когда активность конкретной сети изменится, мы все еще находимся в самом начале. Мы в состоянии искусственно вызвать зрительный образ в мозге мыши, скопировав очень точный паттерн нейронной активности, но не до конца понимаем, как и почему зрительное восприятие производит данный паттерн в первую очередь.

Как вышло, что мы достигли столь поразительного научного прогресса и все же едва коснулись тайн удивительного органа в нашей голове? Ключ к понимаю этого парадокса можно найти в идее Стенсена, предложившего рассматривать мозг в качестве машины. Слово «машина» на протяжении веков означало очень разные вещи, и каждое из его значений влияло на то, как мы относимся к мозгу. Во времена Стенсена существовали только устройства, работающие либо на основе гидравлики, либо на часовом механизме. Знания, которые они могли дать о структуре и функциях мозга, вскоре оказались ограниченными, и теперь никто не рассматривает его таким образом. С открытием электростимуляции нервов в XIX веке мозг начали представлять в виде своего рода телеграфной сети, а затем, после обнаружения нейронов и синапсов, как телефонную станцию, позволяющую гибко организовывать и выводить данные (эта метафора до сих пор иногда используется в научных статьях). Начиная с 1950-х годов, в умах исследователей господствовали концепции, пришедшие в биологию из области вычислительной техники: цепи обратной связи, информация, коды и вычисления. Но, хотя многие из мозговых функций, которые мы определили, обычно связаны с каким-то видом вычислений, есть только несколько полностью понятных примеров. И некоторые из самых блестящих и значимых теоретических прозрений о том, как нервные системы могут «вычислять», оказались ошибочными.

Прежде всего, как вскоре поняли ученые середины XX века, впервые использовавшие параллель между мозгом и компьютером, мозг не является аналогом цифровых технологий. Даже простейший мозг животного — это не компьютер, подобный какому-либо из уже созданных человеком или тому, что мы пока не можем себе представить. Мозг — не компьютер, но он похож больше на компьютер, чем на часы.

...

Мозг больше похож на компьютер, чем на часы.

И, размышляя о параллелях между компьютером и мозгом, мы можем получить представление о том, что происходит и в наших головах, и в головах животных.

Изучение представлений о мозге — то, с какой машиной мы его соотносим, — показывает, что, хотя человечество все еще далеко от полного понимания, способов думать о мозге гораздо больше, чем в прошлом, не только из-за обнаруженных нами удивительных фактов, но прежде всего из-за того, как мы их интерпретируем.

Эти изменения имеют большое значение. На протяжении столетий каждый «слой» технологической метафоры добавлял что-то к нашему пониманию, позволяя проводить новые эксперименты и переосмысливать старые открытия. Но, крепко держась за метафоры, мы в итоге ограничиваем собственное мышление. Многие ученые сейчас осознают, что, рассматривая мозг как компьютер, пассивно реагирующий на вводимые данные и обрабатывающий их, мы забываем, что он является активным органом, частью тела, которая вмешивается в мир и имеет эволюционное прошлое, сформировавшее его структуру и функции. Мы упускаем из виду ключевые моменты мозговой деятельности. Другими словами, метафоры формируют наши идеи не всегда полезным образом.

Многообещающая связь технологии и науки о мозге говорит о том, что завтра, с появлением новых и пока еще не предвиденных достижений, наши представления снова изменятся. По мере формирования нового понимания мы будем переосмысливать нынешние убеждения, отбрасывать некоторые ошибочные предположения и разрабатывать иные теории и способы понимания. Когда ученые осознают, что их мышление — включая вопросы, которые они могут задавать, и эксперименты, которые они могут себе представить, — частично обрамлено и ограничено технологическими метафорами, они часто приходят в восторг от перспективы будущего и хотят знать, каким будет Следующее Большое Открытие и как они смогут применить его в своих исследованиях. Если бы я имел хоть малейшее представление об этом, то был бы очень богат.