Суточная норма витамина B12

По данным Немецкого общества питания, фактическая суточная потребность в B12 составляет всего 2 мкг (микрограмма). Однако Немецкое общество питания рекомендует взрослым принимать более высокую дозу — 4 мкг в день [17] [В РФ рекомендуемая норма витамина B12 для взрослого населения старше 18 лет — 3, 0 мкг. Методические рекомендации MP 2.3.1.0253-21 «Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации» (утв. Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека 22 июля 2021 г.). — Прим. ред.]. Это связано с тем, что люди обычно не могут усвоить весь витамин B12 из пищи или добавок, а также способность к усвоению снижается с возрастом и существуют индивидуальные различия в способности к усвоению. Рекомендация актуальна и в рамках смешанного питания. Но объективно это количество также незначительно и показывает, насколько мало на самом деле нужно организму витамина B12: 4 мкг — всего лишь три миллионные доли грамма.

...

Таким образом, даже если бы вы дожили до 100 лет, за всю жизнь вам потребовалось бы всего 0,1 г витамина B12.

Однако в 2006 году одно из исследований поставило под сомнение официальные рекомендации, по крайней мере, для людей преклонного возраста, поскольку данные по итогам анализов 100 датских женщин в период постменопаузы показали, что количество витамина в крови можно оптимально повысить в результате ежедневного приема 6 мкг B12 [81]. Затем, в 2010 году, была обследована более многочисленная группа, состоящая из почти 300 американских мужчин и женщин в возрасте 18–50 лет. Установлено, что показатели крови всех тестируемых достигали оптимального значения при приеме 4–7 мкг B12 в сутки [19]. Однако даже при суточной потребности в 6 мкг человек за сто лет жизни может усвоить лишь около 0,25 г B12.

Вопреки распространенному мнению, витамин B12 относительно стабилен при нагревании. Потери B12 в продуктах животного происхождения варьируются в пределах 10–30 % при обычных способах приготовления пищи в домашних условиях [20, 21, 22, 23]. Во время таких процессов, как пастеризация молока, разрушается 5-10 % витамина [24]. Даже когда молоко нагревается до сверхвысоких температур, теряется лишь около трети [25]. Термостойкость витамина распространяется и на B12, который, например, в некоторых странах добавляют в муку. Хлебное тесто, обогащенное B12, теряет в процессе выпечки также лишь треть от первоначального содержания витамина [26].

Краткий экскурс в анатомию человека

Важно получать достаточное количество витамина B12 с пищей или соответствующими добавками. Кроме того, большую роль играет и то, насколько хорошо витамин усваивается организмом. Люди по разным причинам нередко страдают от легкой и тяжелой формы дефицита витамина B12, несмотря на достаточное потребление пищи. Чтобы лучше разобраться в этой важной теме, необходимо кратко рассказать об устройстве и функционировании пищеварительного тракта человека. Это единственный способ получить лучшее представление о сложных путях, которые B12 должен пройти в организме, прежде чем он сможет полностью выполнить свои функции. Рис. 12 помогает наглядно представить, где могут возникнуть проблемы, препятствующие оптимальному усвоению и действию витамина B12.

B12, который иногда также называют внешним фактором Кастла, преимущественно связан с белками пищи, и поэтому еще одно его название — комплекс B12-белок. В желудке B12 отделяется от белка ферментами, содержащимися в желудочной кислоте (так называемыми протеазами) и продолжает свой путь уже в виде свободного B12. Часть свободного кобаламина в пищевых добавках связывается с транспортными белками в ротовой полости, с которыми B12 из комплекса B12-белок может связаться только после отделения от пищевого белка в желудке. Этот транспортный белок, называемый гаптокоррином (ГК), вырабатывается в слюнных железах слизистой оболочки полости рта с целью защиты B12 от воздействия желудочной кислоты сразу после его попадания в желудок. Различные типы протеаз с разными названиями активны в разных местах пищеварительного тракта человека. В желудочной кислоте за расщепление B12 из пищевого белка отвечает так называемый пепсин.


РИС. 12: УСВОЕНИЕ ВИТАМИНА B12 В ОРГАНИЗМЕ ЧЕЛОВЕКА [27, 28, 29, 30]


Попадая в желудок, связанный с белком B12 отщепляется от него с помощью фермента пепсина. Теперь этот свободный, но чувствительный к кислоте B12 нуждается в защите от желудочной кислоты, чтобы попасть из желудка в тонкий кишечник без повреждений. Поэтому, как и свободный B12, он связывается с защитными транспортными белками (гаптокоррином) из слизистой оболочки полости рта, попавшими в желудок вместе с пищевой целлюлозой, образуя комплекс B12-гаптокоррин. Это позволяет защитить витамин от воздействия желудочной кислоты. В желудке, точнее в слизистой оболочке желудка, также есть париетальные клетки, которые выделяют чрезвычайно важный внутренний фактор Кастла (ВФК) — еще один специальный транспортный белок, имеющий огромное значение для последующего всасывания B12 в тонком кишечнике.

После того как комплекс B12-гаптокоррин покидает желудок и попадает в первый отдел тонкого кишечника (двенадцатиперстную кишку), в игру вступает другой фермент, расщепляющий белок. На этот раз он выделяется поджелудочной железой и попадает в тонкий кишечник. Этот фермент называется трипсин. Он расщепляет исходный комплекс B12-гаптокоррин, в результате чего B12 снова высвобождается. Это позволяет ему присоединиться ко второму транспортному белку, внутреннему фактору, вырабатываемому в желудке. Этот транспортный белок проходит тот же путь от желудка в тонкий кишечник. Теперь комплекс B12-внутренний фактор защищен от протеолитических ферментов и может передвигаться по тонкому кишечнику. Когда он достигает третьего, последнего отдела тонкого кишечника, так называемой подвздошной кишки, он прикрепляется к специальным рецепторам внутренних факторов слизистой оболочки тонкого кишечника и всасывается в кровь. Ограниченное количество рецепторов является главной причиной того, что за единицу времени всасывается только около 1,5–2,5 мкг B12 и полная способность к всасыванию B12 восстанавливается только через 4–6 часов, когда ранее прикрепленный B12 отсоединяется от рецепторов и попадает в кровоток.

После того как B12 абсорбируется рецепторами внутренних факторов, он попадает в клетки слизистой оболочки тонкого кишечника, и здесь комплекс B12-внутренний фактор вновь расщепляется, чтобы B12 мог связаться с другими транспортными белками для его попадания в кровь. Около 20 % всасываемого B12 связано с так называемым транскобаламином II, который образуется в клетках слизистой оболочки тонкого кишечника. Этот комплекс B12-транскобаламин II называется голотранскобаламином II (Holo-TC). В отличие от комплексов B12 с другими транспортными белками крови, это единственный комплекс, поглощаемый клетками, и, следовательно, он является активным.

...

Многим людям голотранскобаламин уже знаком по анализам крови, поскольку именно его концентрацию определяют, если хотят узнать количество активного B12 в организме.

После того как комплекс B12-транскобаламин II поступает в клетки-мишени, например, в печень или костный мозг, он соединяется с имеющимися там рецепторами транскобаламина II и таким образом усваивается в клетке. Остальные 80 % витамина B12, которые не присутствуют в крови в виде голотранскобаламина II, связаны с другими транспортными белками и не являются биологически активными. Их точная функция пока не установлена.

В зависимости от места действия B12 он преобразуется в ту или иную форму. Не каждый тип B12 может выполнять все необходимые функции, и, например, метилкобаламин не может играть роль аденозилкобаламина и наоборот. Гидроксокобаламин и цианокобаламин неактивны в организме, и оба должны сначала быть преобразованы в соответствующую форму (метилкобаламин или аденозилкобаламин), чтобы стать биологически активными и иметь возможность выполнять свои функции.

В цитоплазме клетки метилкобаламин образуется из различных кобаламинов, поступающих с пищей или из пищевых добавок. Хотя метилкобаламин выполняет несколько функций, одна из них особенно важна для организма. Он расщепляет токсичную аминокислоту гомоцистеин, которая образуется при употреблении продуктов, содержащих метионин. Поэтому в некоторых случаях повышенный уровень гомоцистеина может косвенно свидетельствовать и о дефиците B12. Но, в отличие от метилкобаламина, B12 выполняет еще одну важную задачу. Для обеспечения организма достаточным количеством энергии в цитоплазме клеток есть митохондрии, которые функционируют как электростанции для клетки и обеспечивают ее энергией за счет биохимических реакций. Важную роль в этом сложном процессе играет B12 в форме аденозилкобаламина. Поэтому, в отличие от цитоплазмы, в митохондриях из различных кобаламинов образуется не метилкобаламин, а аденозилкобаламин. Если в митохондриях слишком мало аденозилкобаламина, то увеличивается количество так называемой метилмалоновой кислоты. Это, в свою очередь, также может служить косвенным маркером дефицита B12. Гомоцистеин и метилмалоновая кислота подробно рассматриваются в разделе, посвященном параметрам, с помощью которых можно оценить обеспеченность организма B12.