Мы зададимся еще множеством вопросов о ДНК: сколько ее у нас? как она хранится, упорядочивается и декодируется в наших клетках? как мы можем изменять свой геном (или геном нашего будущего ребенка)? Эти вопросы связывают друг с другом физические свойства и биологические функции. Но чтобы ответить на них, нам нужно познакомиться с другим ключевым игроком на клеточной арене — белком. В следующей главе мы узнаем, что такое белки и как они взаимодействуют с ДНК.

Глава 2. Белки: молекулярное оригами

В основе почти любого действия или события в вашем организме лежит белок. Белки в красных кровяных тельцах обратимо связывают кислород из воздуха, которым вы дышите. Одни белки тянут за собой другие, обеспечивая сокращение ваших мышц. Белки вытягивают и втягивают выпячивания, с помощью которых клетки иммунной системы протискиваются сквозь ваши ткани. Одни белки в ваших глазах улавливают свет и порождают электрические импульсы, а другие открывают и закрывают шлюзы, направляя эти импульсы в ваш мозг. Множество разных белков содержится не только в клетках, но и за их пределами, придавая, например, прочность и эластичность вашим тканям. Но что же такое белки?

Как и ДНК, белок — это молекула, состоящая из выстроенных в цепь простых единиц. В ДНК простейшим звеном может выступать любой из четырех нуклеотидов, а в белке — любая из 20 аминокислот. В каком бы порядке ни располагались нуклеотиды в цепи, двухцепочечная ДНК всегда укладывается в двойную спираль. Структура белков, напротив, определяется их аминокислотной последовательностью. Каждый белок имеет характерное лишь для него расположение аминокислот, а следовательно, и отличную от других трехмерную форму. Схемы и инструменты для постройки белка закодированы в нем же. В белках, пожалуй, ярче всего проявляется принцип самосборки, подразумевающий, что природа кодирует инструкции по организации вещества в самом веществе, затем они активируются и выполняются универсальными физическими силами. Самосборка характерна не только для живых организмов — насыпаемый песок, например, собирается в конусы, наклоненные под определенными углами, а мыльные пузыри оформляются в сферы, — но в биологии она вездесуща. Изучая белки, мы увидим, как силы порождают формы, как этот процесс увенчивается успехом и все же иногда с треском проваливается и как тяжело компьютерам даются геометрические расчеты, с которыми молекулы справляются за микросекунды.

Белки в трех измерениях

Аминокислотная цепь в воде изгибается, перекручивается и складывается в специфическую форму. Чаще всего в белках встречаются два варианта вторичной структуры: спирали и листы (на рисунке — слева и справа соответственно).



Я не стал рисовать все атомы в этих структурах, а ограничился лишь несколькими показательными точками и связями между ними. Спиральная и листовая структуры в белковых молекулах настолько распространены, что мы часто изображаем стилизованные формы — плавную спираль диаметром около нанометра (одной миллиардной доли метра) и лист (или слегка складчатый слой) из нескольких тяжей шириной примерно треть нанометра.

Раньше всего, в 1958 году, была открыта трехмерная структура белка миоглобина, который переносит кислород в мышцах. Как и в случае ДНК и многих других молекул, это стало возможно благодаря математическому анализу дифракционной картины, полученной в результате облучения вещества рентгеновскими лучами. Структурой миоглобина занималась в Кембриджском университете группа Джона Кендрю. Для проведения рентгенографии белки нужно перевести в твердое состояние, превратив в кристаллы. Но если кристаллы сахара, например, можно получить на любой кухне, то подтолкнуть белки к кристаллизации не так-то просто даже в современной лаборатории. Сотрудники Кендрю безуспешно экспериментировали с миоглобином морских свиней, пингвинов, морских котиков и других животных, пока не наткнулись на мясо кашалота, очень кстати припасенное в морозильной камере на Кембриджской станции низкотемпературных исследований. (Особенное внимание именно к этой группе животных объясняется тем, что мышцы морских обитателей, дышащих воздухом и погружающихся на большую глубину, содержат очень много миоглобина, который позволяет им запасать больше кислорода и реже всплывать на поверхность.) Белок кашалота формировал «поистине изумительные <…> гигантские кристаллы»1. Изучив их, Кендрю и его коллеги определили, что 153-аминокислотная цепь миоглобина складывается в структуру из восьми спиралей и нескольких неспиральных перемычек, прикрепленную к плоскому небелковому комплексному соединению, в котором атом железа связывается с кислородом (см. рисунок).




Пример белка, состоящего главным образом из листов, мы тоже можем найти в морском мире. Зеленый флуоресцентный белок, GFP, — это светоиспускающий белок, впервые обнаруженный в организме биолюминесцентной медузы. GFP представляет собой цепь из 238 аминокислот, сложенную в бочонок из листов шириной около трех нанометров, внутри которого находится фрагмент молекулы, отвечающий за испускание зеленого света (см. рисунок ниже2). Этот белок не остался простой океанической диковиной. Ученые научились внедрять GFP в бактерии, грибы, растения и даже животных, от плодовых мушек до рыбок данио-рерио, превратив его в своеобразный маяк, метку, позволяющую визуализировать нужные типы клеток и наблюдать, как они растут, движутся и делятся. Кроме того, GFP можно cшивать с интересующими белками, создавая так химерные молекулы-репортеры, за которыми легко следить: по свечению можно узнать, в какой части клетки они находятся, как ведут себя, когда клетки выполняют разные задачи, какие связи устанавливают с другими белками при создании более сложных структур [Полноразмерный GFP подходит не для всех подобных задач из-за риска искажения естественного поведения сшитых с ним белков.]. Сегодня существует богатая палитра производных от GFP либо происходящих из кораллов флуоресцентных белков, испускающих свет всех цветов радуги и носящих названия от незамысловатых («красный флуоресцентный белок») до куда более выразительных («мандарин», «вишня», «слива» — целая серия фруктовых имен). Этот ансамбль лег в основу многоцветной визуализации биологических механизмов, сферы применения которой вышли далеко за пределы морской колыбели этих белков [Сориентировать в спектре и практическом применении улучшенных флуоресцентных белков может красочно иллюстрированная статья “Флуоресцентные белки: разнообразнее, чем вы думали!” (https://biomolecula.ru/articles/fluorestsentnye-belki-raznoobraznee-chem-vy-dumali).]3.

Портреты белков

Трехмерная структура белка важна в первую очередь потому, что тесно связана с его химическими или физическими задачами. Так, у GFP бочонок защищает светоиспускающий механизм от гашения водой и растворенным в ней кислородом. Однако следующие примеры покажут взаимосвязь строения и функций белков еще нагляднее.

Тонкие мембраны разделяют клетку на отсеки и отгораживают ее внутреннее пространство от окружающей среды. Особые мембранные белки, часто формирующие структуры в виде бочонка или кольца, обеспечивают сквозной транспорт атомов и молекул. Один из классов таких транспортеров составляют ионные каналы, пропускающие те или иные ионы — заряженные атомы калия, натрия и хлора, например — внутрь или наружу клетки через центральную пору, которая может быть открыта или закрыта. Контролировать поток ионов критически важно. Скольжение вашего взгляда по этой странице и бег мыслей у вас в голове определяются электрическим напряжением мембран (мембранным потенциалом), которое возникает при перераспределении ионов через них. Многие токсины животных, включая змей и скорпионов, действуют именно на ионные каналы, блокируя в итоге нервную систему жертв. На рисунке ниже изображен калиевый канал в поперечном разрезе (подразумеваемая мембрана лежит в плоскости листа)4. Центральной точкой обозначен ион калия, движущийся к нам или от нас, то есть входящий в клетку или выходящий из нее. Канал этот состоит из четырех идентичных молекул белка, которые свободно связываются друг с другом, формируя трансмембранную пору.



Если каналы могут только открываться и закрываться, то другие белки способны на более замысловатые упражнения. На следующем рисунке я изобразил димер из двух молекул белка кинезина5. Как подсказывает его название, этот белок участвует в движении. Молекула кинезина представляет собой длинный стебель, соединенный гибким аминокислотным шарниром с основанием в виде луковицы. Спиральные стебли двух молекул переплетаются и верхними частями специфически прикрепляются к грузу, который необходимо переместить внутри клетки. Грузом могут быть, например, мембранные пузырьки с химическими веществами, которые синтезируются в теле нейрона, а ожидать высвобождения должны на его периферии. Сформированный комплекс моторного белка с грузом проходит по внутриклеточным «рельсам», микротрубочкам, причем проходит в прямом смысле: две округлые ножки по очереди прикрепляются к рельсам и открепляются от них, шаг за шагом приближаясь к пункту назначения [Свежие представления о механизмах движения кинезина (и очень понятную картинку) можно найти в статье Fei J., Zhou R. Watching biomolecules stride in real time. Science. 2023; 379 (6636): 986–987. Короткая анимация: https://www.youtube.com/watch?v=ilgdFvit49Y.]. (Эти ножки принято называть головками, а шагающее движение со сменой опережающей ноги — перехватывающим. Да-да, терминология не самая очевидная.) Рельсы тоже состоят из белков — на сей раз способных выстраиваться в жесткие трубочки, — и их трехмерная структура тоже позволяет им выполнять свою работу.