Но как этот факт стал очевидным? Важную роль здесь, вероятно, сыграла знаменитая фотография Земли, сделанная с борта космического аппарата «Аполлон-17» в 1972 г. Именно она впервые дала нам возможность увидеть нашу планету со стороны. И это стало для нас откровением: человечество осознало, мгновенно и бесповоротно, хрупкость, уникальность и взаимосвязанность всего сущего на Земле. А вид величественной голубой планеты, восходящей над безжизненной поверхностью Луны, положил начало бурному развитию экологического движения [Здесь автор имеет в виду фотографию «Восход Земли», сделанную «Аполлоном-8» в 1968 г. — Прим. ред.]. Но мы уже были готовы увидеть Землю такой. Освоение космоса не столько подтолкнуло нас к масштабному видению планеты, сколько, напротив, стало его результатом. Задолго до полетов «Спутников» и «Аполлонов» ученые, изучавшие Землю, сформировали представление о ней как о едином организме, где все взаимосвязано [См., напр.: Sheila Jasanoff, "Image and Imagination: The Formation of Global Environmental Consciousness," in P. Edwards and C. Miller, eds., Changing the Atmosphere: Expert Knowledge and Environmental Governance (Cambridge, MA: MIT Press, 2001), 309–337. Более полную историю о формировании глобальных образов см.: Dennis Cosgrove, Apollo's Eye: A Cartographic Genealogy of the Earth in the Western Imagination (Baltimore: Johns Hopkins University Press, 2001); Sebastian Grevsmühl, La Terre vue d'en haut: l'invention de l'environnement global (Paris: Editions du Seuil, 2014).].

Лучшее понимание многообразия научных дисциплин, формирующих современную климатологию, необходимо нам, чтобы отдавать себе отчет в том, что мы знаем и чего не знаем. Тенденция рассматривать климатологию с точки зрения ее способности делать прогнозы серьезно влияет на то, как мы, государства и граждане, принимаем решения, сталкиваясь с неопределенностью будущего. В этом ожидании, что современная климатическая наука может и должна обладать прогностической способностью, слышны отголоски старой «науки закономерностей», астрономии. Между тем то, что сегодня называют наукой о климате, представляет собой совокупность множества разных методов получения знаний (эти методы иногда называют субдисциплинами). Среди них геология, климатология, метеорология, физика атмосферы, гляциология и информатика. Чтобы понять, как наше знание о планете стало масштабным, нужно понять, как эти дисциплины начали представляться взаимосвязанными в рамках отдельной комплексной науки. Таким образом, история нашего знания о планете — это история научных дисциплин (и всех связанных с ними практик, инструментов, методов и социальных структур), которые и создали это знание. И чтобы возникло представление о глобальном климате, потребовалось создать науку о климате, в состав которой вошло множество отдельных дисциплин, найдя способы объединить разрозненные знания об одном и том же объекте изучения.

Чтобы разобраться в особенностях науки о климате (в широком понимании), необходимо вернуться к ее истокам. Две мои предыдущие книги относятся к биографическому жанру: одна из них посвящена Марии Кюри, другая — Исааку Ньютону. Меня всегда интересовала жизнь конкретных людей. По тому же пути я решила пойти и теперь. Люди — а не вода — вот главные герои этой книги. Все они ученые. Самый старший из моих героев родился в 1819 г., самый молодой — в 1923 г. Рассказывая их истории, я предлагаю вам увидеть планету их глазами и совершить путешествие по водам Земли, в котором эти выдающиеся мыслители станут вашими проводниками. Это исследование основано на их личном опыте и впечатлениях.

Я начинаю повествование в 1850-х гг., когда были предприняты первые попытки измерить и объяснить погодные и климатические изменения в глобальном масштабе, что положило начало современному прогнозированию погоды и науке о климате. Тогда же были проведены первые исследования роли атмосферы в регулировании климата, хотя в то время никто и предположить не мог, что человек в состоянии влиять на температуру на земном шаре. Это также было время, когда казалось, что новая наука термодинамика вот-вот раскроет тайны не только Земли, но и Вселенной. Новые уравнения уже могли объяснить поведение молекул статистически. Оставалось узнать, способны ли они также объяснить поведение молекул в реальном мире ледников, облаков и водяного пара.

В 1850-х гг. ледники были в центре внимания ученых-естествоиспытателей, пытавшихся раскрыть секрет их движения, а значит, и прошлого и будущего климата Земли. Сегодня ледниковые периоды воспринимаются как нечто само собой разумеющееся, но когда-то они представлялись совершенно непостижимым явлением и их загадка требовала разрешения. Джон Тиндаль искал ответы на эти фундаментальные вопросы о времени, движении и разрушении среди суровой смертоносной красоты альпийских ледников, а вернувшись в Лондон — в своей полуподвальной лаборатории. Его исследования воздействия тепла на лед и водяной пар свидетельствуют об увлеченности темой энергии и ее рассеяния, а также прошлым и будущим планеты.

В 1856 г. шотландский астроном и ученый-путешественник Чарльз Пьяцци Смит впервые попытался провести астрономические наблюдения без помех в виде облаков, то есть водяного пара, находящегося в атмосфере, и для этого поднялся на вершину вулкана на Тенерифе (одного из островов Канарского архипелага). Впоследствии он занялся также изучением самих облаков, рассчитывая сделать прогнозирование погоды более надежным и успешным. В этом он потерпел неудачу, а позже запятнал свою научную репутацию, страстно отстаивая идею о том, что традиционные британские единицы измерения были ниспосланы свыше при строительстве египетских пирамид. Изгнанный из научного истеблишмента, он искал утешения в сочетании научного наблюдения и религиозного созерцания, посвятив последние годы жизни отшельническому труду по составлению фотографического атласа облаков.

И Тиндаль, и Смит стремились внести свой вклад в прогностическую науку, которая могла бы точно объяснить происходящее с водой — движение ледников, действие водяного пара, образование облаков и выпадение дождя. Стремясь объективно и беспристрастно описывать мир природы, оба в то же время остро переживали ощущение тайны и чуда, сопровождавшее их исследования, и терзались внутренним противоречием между этими двумя позициями. Их истории отражают мучительную попытку ученых Викторианской эпохи примириться с потерями, сопутствующими постижению скрытой механики природных явлений. Стоит ли обретение знания утраты тайны? Во многом Тиндаль и Смит были представителями последнего поколения ученых, считавших возможным выносить эту экзистенциальную борьбу в публичное пространство. В своих книгах они приглашали рядового читателя испытать те же чувства — страх, удивление, благоговейный трепет, — которые переживали сами при встрече с величественными явлениями природы — облаками или ледниками. А затем пытались свести эти явления к цифрам, уравнениям и теориям, объясняющим сокровенную суть того, что прежде считалось непознаваемым.

История Гилберта Уокера, необычайно талантливого английского ученого, ознаменовала переход от XIX в., времени, когда научные идеи высказывались в книгах, адресованных широкой аудитории, к XX в., когда на смену драматическим рассказам о путешествиях, авторами которых были такие люди, как Смит и Тиндаль, пришли сухие научные статьи. На тот момент, когда Уокер стал директором Индийских метеорологических обсерваторий, многие считали, что ключ к раскрытию тайны муссонных дождей, от которых зависел (и продолжает зависеть) урожай, а значит, и благополучие миллионов людей, кроется в циклах образования пятен на Солнце. Благодаря доступу к метеоданным, собираемым в обсерваториях, и упорной работе индийских расчетчиков, оплаченной британским правительством, Уокер смог провести вычисления, которые разрушили надежды теоретиков солнечных пятен на существование связей Солнца и Земли. Зато он сделал удивительное статистическое открытие. Его расчеты указали на существование связи (так называемой телеконнекции, или дальней корреляционной связи) между муссонами в Индии и давлением и температурой в отдаленном регионе Тихого океана. Уокер назвал обнаруженные им взаимосвязанные метеорологические явления «мировой погодой», а те из них, что влияли конкретно на Индию, Южной осцилляцией.

Если Тиндаль стремился установить связь между физическими явлениями, то открытия Уокера основывались исключительно на статистических данных. Он не мог объяснить, почему давление в западной части Тихого океана влияет на количество осадков в Индийском океане, — но с уверенностью заявлял о существовании этого явления. (Прошло еще 40 лет, прежде чем ученые сумели выявить физический механизм, лежащий в основе Южной осцилляции.)

Золотой век физической океанографии и метеорологии пришелся на начало Второй мировой войны, когда возникла необходимость в изучении атмосферы и океана для военных целей, что обеспечило ученым щедрое государственное финансирование, и последовавший за ней период холодной войны. Это было время больших открытий, сделанных на основе простых моделей, и новых форм международного сотрудничества, возникших на фоне напряженности в мировой политике. В 1948 г. молодой океанограф Генри Стоммел опубликовал статью, в которой объяснил, почему во всех океанических бассейнах на нашей планете быстрые течения концентрируются на западной стороне. Его плодотворные идеи проложили путь новому поколению океанографов, которые показали, что движение воды в Мировом океане гораздо более активно и представляет собой значительно более сложное явление — и во временнóм, и в пространственном измерении, — чем считалось прежде. Тем самым Стоммел подготовил почву для формирования представления об океане как явлении турбулентном, а не стабильном, а также для нового подхода к проведению океанографических исследований, требующего широкомасштабного и долгосрочного сотрудничества, что было неблизко самому Стоммелу.